丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Resolution of Quadruplex Polymorphism by Size‐Exclusion Chromatography

互联网

1884
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

This unit describes a method for separation of quadruplex species formed from the same sequence via size?exclusion chromatography (SEC). Polymorphism is inherent to quadruplex formation, and even relatively simple quadruplex?forming sequences, such as the human telomere sequence d(GGG(TTAGGG)3 ), can form a myriad of possible configurations. HPLC, especially using reversed?phase and anion?exchange methods, has been a mainstay of nucleic acids research and purification for many decades. These methods have been applied for separation of individual quadruplex species formed in a mixture from the same parent sequence. Curr. Protoc. Nucleic Acid Chem. 45:17.3.1?17.3.18. © 2011 by John Wiley & Sons, Inc.

Keywords: SEC; quadruplex; size?exclusion chromatography; telomere

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Size‐Exclusion Chromatography of G‐Quadruplexes
  • Support Protocol 1: Preparation of Quadruplex Sample
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Size‐Exclusion Chromatography of G‐Quadruplexes

  Materials
  • Distilled, deionized water
  • HPLC mobile phase: 100 mM KCl in 25 mM K 2 HPO 4 , pH 7.0 (prepare with K 2 HPO 4 and titrate from pH ∼9.0 to pH 7.0 with HCl so that the total K+ concentration is known)
  • Gel filtration calibration kit LMW (GE Healthcare, cat. no. 28‐4038‐41)
  • Glycerol
  • Quadruplex sample (see protocol 2 )
  • HPLC system with:
    • Waters 600 pump and controller
    • Waters 2998 UV‐vis photodiode array detector
    • Waters 2707 autosampler with 250‐µl sample loop
    • Waters fraction collector III (optional)
    • Computer with Waters Empower Software (optional)
  • Superdex 75 10/300 size‐exclusion column (GE Healthcare, cat. no. 17‐5174‐01)
  • 1.5‐mL microcentrifuge tubes (optional)

Support Protocol 1: Preparation of Quadruplex Sample

  Materials
  • DNA sample
  • Annealing buffer
  • Distilled, deionized water
  • 0.22‐µm filter
  • Dialysis unit
  • 1‐ to 2‐liter beakers
  • 100°C hotplate or water bath
  • Aluminum foil
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 17.3.1 Calibration of the Superdex 75 10/300 column. Top: A mixture of protein standards resolved on the column. 1: conalbumin (75 kDa, V R = 9.36); 2: ovalbumin (43 kDa, V R = 10.19); 3: carbonic anhydrase (29 kDa, V R = 11.32); 4: ribonuclease A (13.7 kDa; V R = 12.84); 5: bovine lung aprotonin (6.5 kDa, V R = 14.66). Bottom: Linear calibration curve developed by graphing V R / V 0 vs. logMW. V 0 (7.61 mL) was determined by injection of blue dextran as described.
    View Image
  •   Figure 17.3.2 Typical elution profile of AS1411. At a glance, there are at least eight isolatable species with varying levels of separation.
    View Image
  •   Figure 17.3.3 Possible topologies of the human telomere sequence include (A) basket (Protein Database code: 143D), (B) hybrid1 (2HY9), (C) hybrid2 (2JPZ), and (D) propeller (1KF1).
    View Image
  •   Figure 17.3.4 (A) 1 H NMR of imino regions of the human telomere sequence AG3 (T2 AG3 )3 and of the AS1411 sequence (G2 T)4 TGT(G2 T)3 G2 . The human telomere exhibits 23‐24 GN1H signals, indicative of the presence of two quadruplex species. AS1411 yields an irresolvable mixture of GN1H resonances known to be the result of more than eight quadruplex species. (B) CD of the same two sequences. The CD data provide no indication of the polymorphism evident from the NMR data. Conventional wisdom would associate the data for AS1411 with a single, parallel‐stranded species in solution.
    View Image
  •   Figure 17.3.5 HPLC results for the following sequences: (A) AS1411, (B) Her2, (C) c‐myc, (D) G4 T4 G4 T4 G4 T4 , (E) HuTel 22, (F) HuTel Hybrid 1, (G) HuTel Hybrid 2, (H) TG4 T.
    View Image
  •   Figure 17.3.6 Resolution of AS1411 polymorphism. Top: Typical chromatographic separation for AS1411 demonstrating multiple isolatable species with apparent molecular weights ranging from 45,000 g/mol to less than 6,000 g/mol. Bottom: 1 H NMR of the fraction of AS1411 corresponding to roughly 14,000 g/mol (marked with * in A). The spectrum shows roughly 16 GN1H signals corresponding to a single, monomeric species.
    View Image

Videos

Literature Cited

Literature Cited
   Ambrus, A., Chen, D., Dai, J., Jones, R.A., and Yang, D. 2005. Solution structure of the biologically relevant G‐quadruplex element in the human c‐MYC promoter. Implications for G‐quadruplex stabilization. Biochemistry 44:2048‐2058.
   Balagurumoorthy, P., Brahmachari, S.K., Mohanty, D., Bansal, M., and Sasisekharan, V. 1992. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 20:4061‐4067.
   Bishop, J.S., Guy‐Caffey, J.K., Ojwang, J.O., Smith, S.R., Hogan, M.E., Cossum, P.A., Rando, R.F., and Chaudhary, N. 1996. Intramolecular G‐quartet motifs confer nuclease resistance to a potent anti‐HIV oligonucleotide. J. Biol. Chem. 271:5698‐5703.
   Blume, S.W., Guarcello, V., Zacharias, W., and Miller, D.M. 1997. Divalent transition metal cations counteract potassium‐induced quadruplex assembly of oligo(dG) sequences. Nucleic Acids Res. 25:617‐625.
   Bonifacio, L., Church, F.C., and Jarstfer, M.B. 2008. Effect of locked‐nucleic acid on a biologically active G‐quadruplex. A structure‐activity relationship of the thrombin aptamer. Int. J. Mol. Sci. 9:422‐433.
   Cogoi, S., Quadrifoglio, F., and Xodo, L.E. 2004. G‐rich oligonucleotide inhibits the binding of a nuclear protein to the Ki‐ras promoter and strongly reduces cell growth in human carcinoma pancreatic cells. Biochemistry 43:2512‐2523.
   Counter, C.M., Avilion, A.A., LeFeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B., and Bacchetti, S. 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921‐1929.
   Dai, J., Chen, D., Jones, R.A., Hurley, L.H., and Yang, D. 2006a. NMR solution structure of the major G‐quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res. 34:5133‐5144.
   Dai, J., Dexheimer, T.S., Chen, D., Carver, M., Ambrus, A., Jones, R.A., and Yang, D. 2006b. An intramolecular G‐quadruplex structure with mixed parallel/antiparallel G‐strands formed in the human BCL‐2 promoter region in solution. J. Am. Chem. Soc. 128:1096‐1098.
   Dai, J., Punchihewa, C., Ambrus, A., Chen, D., Jones, R.A., and Yang, D. 2007. Structure of the intramolecular human telomeric G‐quadruplex in potassium solution: A novel adenine triple formation. Nucleic Acids Res. 35:2440‐2450.
   Dai, J., Carver, M., and Yang, D. 2008. Polymorphism of human telomeric quadruplex structures. Biochimie 90:1172‐1183.
   Dailey, M., Miller, M.C., Bates, P.J., Lane, A.N., and Trent, J.O. 2010. Resolution and characterization of the structural polymorphism of a single quadruplex‐forming sequence. Nucleic Acids Res. 38:4877‐4888
   Dapic, V., Bates, P.J., Trent, J.O., Rodger, A., Thomas, S.D., and Miller, D.M. 2002. Antiproliferative activity of G‐quartet‐forming oligonucleotides with backbone and sugar modifications. Biochemistry 41:3676‐3685.
   Dapic, V., Abdomerović, V., Marrington, R., Peberdy, J., Rodger, A., Trent, J.O., and Bates, P.J. 2003. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res. 31:2097‐2107.
   De Armond, R., Wood, S., Sun, D., Hurley, L.H., and Ebbinghaus, S.W. 2005. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1 alpha promoter. Biochemistry 44:16341‐16350.
   Drygin, D., Siddiqui‐Jain, A., O'Brien, S., Schwaebe, M., Lin, A., Bliesath, J., Ho, C.B., Proffitt, C., Trent, K., Whitten, J.P., Lim, J.K., Von Hoff, D., Anderes, K., and Rice, W.G. 2009. Anticancer activity of CX‐3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 69:7653‐7661.
   Esposito, V., Randazzo, A., Piccialli, G., Petraccone, L., Giancola, C., and Mayol, L. 2004. Effects of an 8‐bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)](4). Org. Biomol. Chem. 2:313‐318.
   Esposito, V., Virgilio, A., Randazzo, A., Galeone, A., and Mayol, L. 2005. A new class of DNA quadruplexes formed by oligodeoxyribonucleotides containing a 3′‐3′ or 5′‐5′ inversion of polarity site. Chem. Commun. (Camb) 31:3953‐3955.
   Fernando, H., Reszka, A.P., Huppert, J., Ladame, S., Rankin, S., Venkitaraman, A.R., Neidle, S., and Balasubramanian, S. 2006. A conserved quadruplex motif located in a transcription activation site of the human c‐kit oncogene. Biochemistry 45:7854‐7860.
   Frigon, R.P., Leypoldt, J.K., Uyeji, S., and Henderson, L.W. 1983. Disparity between Stokes radii of dextrans and proteins as determined by retention volume in gel permeation chromatography. Anal. Chem. 55:1349‐1354.
   Garbett, N.C., Mekmaysy, C.S., and Chaires, J.B. 2009. Sedimentation velocity ultracentrifugation analysis for hydrodynamic characterization of G‐quadruplex structures. In G‐Quadruplex DNA (P. Bauman and J.M. Walker, eds) pp. 97‐120. Springer, New York.
   Giraldo, R., Suzuki, M., Chapman, L., and Rhodes, D. 1994. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: A circular dichroism study. Proc. Natl. Acad. Sci. U.S.A. 91:7658‐7662.
   Gray, R.D., Li, J., and Chaires, J.B. 2009. Energetics and kinetics of a conformational switch in G‐quadruplex DNA. J. Phys. Chem. B 113:2676‐2683.
   Gray, R.D., Petraccone, L., Trent, J.O., and Chaires, J.B. 2010. Characterization of a K+‐induced conformational switch in a human telomeric DNA oligonucleotide using 2‐aminopurine fluorescence. Biochemistry 49:179‐194.
   Gros, J., Aviñó, A., Lopez de la Osa, J., González, C., Lacroix, L., Pérez, A., Orozco, M., Eritja, R., and Mergny, J.L. 2008. 8‐Amino guanine accelerates tetramolecular G‐quadruplex formation. Chem. Commun. 25:2926‐2928.
   Hahn, W.C., Stewart, S.A., Brooks, M.W., York, S.G., Eaton, E., Kurachi, A., Beijersbergen, R.L., Knoll, J.H., Meyerson, M., and Weinberg, R.A. 1999. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5:1164‐1170.
   Hazel, P., Huppert, J., Balasubramanian, S., and Neidle, S. 2004. Loop‐length‐dependent folding of G‐quadruplexes. J. Am. Chem. Soc. 126:16405‐16415.
   Hopkins, A.L. 2009. Drug discovery: Predicting promiscuity. Nature 462:167‐168.
   Hsu, S.T.D., Varnai, P., Bugaut, A., Reszka, A.P., Neidle, S., and Balasubramanian, S. 2009. A G‐rich sequence within the c‐kit oncogene promoter forms a parallel G‐quadruplex having asymmetric G‐tetrad dynamics. J. Am. Chem. Soc. 131:13399‐13409.
   Huppert, J.L. 2007. Four‐stranded DNA: Cancer, gene regulation and drug development. Philos. Transact. A Math Phys. Eng. Sci. 365:2969‐2984.
   Huppert, J.L. and Balasubramanian, S. 2005. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33:2908‐2916.
   Huppert, J.L. and Balasubramanian, S. 2007. G‐quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35:406‐413.
   Ireson, C.R. and Kelland, L.R. 2006. Discovery and development of anticancer aptamers. Mol. Cancer Therapeut. 5:2957‐2962.
   Ireson, C., Djeha, H., Cook, J., Ritchie, C., Jones, D., Green, C., Trent, J., Bates, P., Miller, D., and Kelland, L. 2005. Preclinical anticancer properties of a G‐rich oligonucleotide‐based aptamer, AS1411. Clin. Cancer Res. 11:9114s‐9114s.
   Jing, N.J. and Tweardy, D.J. 2005. Targeting Stat3 in cancer therapy. Anticancer Drugs 16:601‐607.
   Jing, N.J., Rando, R.F., Pommier, Y., and Hogan, M.E. 1997. Ion selective folding of loop domains in a potent anti‐HIV oligonucleotide. Biochemistry 36:12498‐12505.
   Jing, N.J., Li, Y., Xu, X., Sha, W., Li, P., Feng, L., and Tweardy, D.J. 2003. Targeting Stat3 with G‐quartet oligodeoxynucleotides in human cancer cells. DNA Cell Biol. 22:685‐696.
   Jing, N.J., Sha, W., Li, Y., Xiong, W., and Tweardy, D.J. 2005. Rational drug design of G‐quartet DNA as anti‐cancer agents. Curr. Pharm. Des. 11:2841‐2854.
   Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L., Edwards, D.D., Shoichet, B.K., and Roth, B.L. 2009. Predicting new molecular targets for known drugs. Nature 462:175‐181.
   Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011‐2015.
   Kumar, N. and Maiti, S. 2007. Role of locked nucleic acid modified complementary strand in quadruplex/Watson‐Crick duplex equilibrium. J. Phys. Chem. B 111:12328‐12337.
   Kypr, J., Kejnovská, I., Renciuk, D., and Vorlícková, M. 2009. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37:1713‐1725.
   Lane, A.N., Chaires, J.B., Gray, R.D., and Trent, J.O. 2008. Stability and kinetics of G‐quadruplex structures. Nucleic Acids Res. 36:5482‐5515.
   Le Maire, M., Aggerbeck, L.P., Monteilhet, C., Andersen, J.P., and Møller, J.V. 1986. The use of high‐performance liquid chromatography for the determination of size and molecular weight of proteins: A caution and a list of membrane proteins suitable as standards. Anal. Biochem. 154:525‐535.
   Le Maire, M., Ghazi, A., Møller, J.V., and Aggerbeck, L.P. 1987. The use of gel chromatography for the determination of sizes and relative molecular masses of proteins. Interpretation of calibration curves in terms of gel‐pore‐size distribution. Biochem. J. 243:399‐404.
   Li, J., Correia, J.J., Wang, L., Trent, J.O., and Chaires, J.B. 2005. Not so crystal clear: The structure of the human telomere G‐quadruplex in solution differs from that present in a crystal. Nucleic Acids Res. 33:4649‐4659.
   Marathias, V.M., Sawicki, M.J., and Bolton, P.H. 1999. 6‐Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation. Nucleic Acids Res. 27:2860‐2867.
   Mekmaysy, C.S., Petraccone, L., Garbett, N.C., Ragazzon, P.A., Gray, R., Trent, J.O., and Chaires, J.B. 2008. Effect of O6‐methylguanine on the stability of G‐quadruplex DNA. J. Am. Chem. Soc. 130:6710‐6711.
   Miller, M.C., Buscaglia, R., Chaires, J.B., Lane, A.N., and Trent, J.O. 2010. Hydration is a major determinant of the G‐quadruplex stability and conformation of the human telomere 3′ sequence of d(AG(3)(TTAG(3))(3)). J. Am. Chem. Soc. 132:1705‐1707.
   Miyoshi, D., Nakao, A., and Sugimoto, N. 2001. Structural transition of d(G4T4G4) from antiparallel to parallel G‐quartet induced by divalent cations. Nucleic Acids Res. 1:259‐260.
   Neidle, S. 2010. Human telomeric G‐quadruplex: The current status of telomeric G‐quadruplexes as therapeutic targets in human cancer. FEBS J. 277:1118‐1125.
   Neidle, S. and Parkinson, G. 2002. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discov. 1:383‐393.
   Patel, D.J., Phan, A.T., and Kuryavyi, V. 2007. Human telomere, oncogenic promoter and 5′‐UTR G‐quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 35:7429‐7455.
   Petrovic, A.G. and Polavarapu, P.L. 2008. Quadruplex structure of polyriboinosinic acid: Dependence on alkali metal ion concentration, pH and temperature. J. Phys. Chem. B 112:2255‐2260.
   Phan, A.T., Kuryavyi, V., Burge, S., Neidle, S., and Patel, D.J. 2007a. Structure of an unprecedented G‐quadruplex scaffold in the human c‐kit promoter. J. Am. Chem. Soc. 129:4386‐4392.
   Phan, A.T., Kuryavyi, V., Luu, K.N., and Patel, D.J. 2007b. Structure of two intramolecular G‐quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res. 35:6517‐6525.
   Qi, J. and Shafer, R.H. 2007. Human telomere quadruplex: Refolding and selection of individual conformers via RNA/DNA chimeric editing. Biochemistry 46:7599‐7606.
   Qi, H., Lin, C.P., Fu, X., Wood, L.M., Liu, A.A., Tsai, Y.C., Chen, Y., Barbieri, C.M., Pilch, D.S., and Liu, L.F. 2006. G‐quadruplexes induce apoptosis in tumor cells. Cancer Res. 66:11808‐11816.
   Rawal, P., Kummarasetti, V.B.R., Ravindran, J., Kumar, N., Halder, K., Sharma, R., Mukerji, M., Das, S.K., and Chowdhury, S. 2006. Genome‐wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res. 16:644‐655.
   Shay, J.W. and Bacchetti, S. 1997. A survey of telomerase activity in human cancer. Eur. J. Cancer 33:787‐791.
   Siddiqui‐Jain, A., Grand, C.L., Bearss, D.J., and Hurley, L.H. 2002. Direct evidence for a G‐quadruplex in a promoter region and its targeting with a small molecule to repress c‐MYC transcription. Proc. Natl. Acad. Sci. U.S.A. 99:11593‐11598.
   Simonsson, T., Pecinka, P., and Kubista, M. 1998. DNA tetraplex formation in the control region of c‐myc. Nucleic Acids Res. 26:1167‐1172.
   Spackova, N., Cubero, E., Sponer, J., and Orozco, M. 2004. Theoretical study of the guanine→6‐thioguanine substitution in duplexes, triplexes, and tetraplexes. J. Am. Chem. Soc. 126:14642‐14650.
   Sun, D., Thompson, B., Cathers, B.E., Salazar, M., Kerwin, S.M., Trent, J.O., Jenkins, T.C., Neidle, S., and Hurley, L.H. 1997. Inhibition of human telomerase by a G‐quadruplex‐interactive compound. J. Med. Chem. 40:2113‐2116.
   Sun, D.Y., Guo, K.X., Rusche, J.J., and Hurley, L.H. 2005. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G‐quadruplex‐interactive agents. Nucleic Acids Res. 33:6070‐6080.
   Suzuki, J., Miyano‐Kurosaki, N., Kuwasaki, T., Takeuchi, H., Kawai, G., and Takaku, H. 2002. Inhibition of human immunodeficiency virus type 1 activity in vitro by a new self‐stabilized oligonucleotide with guanosine‐thymidine quadruplex motifs. J. Virol. 76:3015‐3022.
   Szalai, V.A., Singer, M.J., and Thorp, H.H. 2002. Site‐specific probing of oxidative reactivity and telomerase function using 7,8‐dihydro‐8‐oxoguanine in telomeric DNA. J. Am. Chem. Soc. 124:1625‐1631.
   Tang, C.F. and Shafer, R.H. 2006. Engineering the quadruplex fold: Nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J. Am. Chem. Soc. 128:5966‐5973.
   Virgilio, A., Esposito, V., Randazzo, A., Mayol, L., and Galeone, A. 2005a. 8‐Methyl‐2′‐deoxyguanosine incorporation into parallel DNA quadruplex structures. Nucleic Acids Res. 33:6188‐6195.
   Virgilio, A., Esposito, V., Randazzo, A., Mayol, L., and Galeone, A. 2005b. Effects of 8‐methyl‐2′‐deoxyadenosine incorporation into quadruplex forming oligodeoxyribonucleotides. Bioorg. Med. Chem. 13:1037‐1044.
   Webba da Silva, M. 2007. Geometric formalism for DNA quadruplex folding. Chemistry 13:9738‐9745.
   Wright, W.E., Tesmer, V.M., Huffman, K.E., Levene, S.D., and Shay, J.W. 1997. Normal human chromosomes have long G‐rich telomeric overhangs at one end. Genes Dev. 11:2801‐2809.
   Xue, Y., Kan, Z.Y., Wang, Q., Yao, Y., Liu, J., Hao, Y.H., and Tan, Z. 2007. Human telomeric DNA forms parallel‐stranded intramolecular G‐quadruplex in K+ solution under molecular crowding condition. J. Am. Chem. Soc. 129:11185‐11191.
   Yang, D. and Okamoto, K. 2010. Structural insights into G‐quadruplexes: Towards new anticancer drugs. Future Med. Chem. 2:619‐646.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序