提问
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

生物芯片杂交

互联网

1910

待分析基因在与芯片结合探针杂交之前必需进行分离、扩增及标记。根据样品来源、基因含量及检测方法和分析目的不同,采用的基因分离、扩增及标记方法各异。当然,常规的基因分离、扩增及标记技术完全可以采用,但操作繁琐且费时。高度集成的微型样品处理系统如细胞分离芯片及基因扩增芯片等是实现上述目的的有效手段和发展方向。为了获得基因的杂交信号必须对目的基因进行标记,目前采用的最普遍的荧光标记方法与传统方法如体外转录、PCR、逆转录等原理上并无多大差异,只是采用的荧光素种类更多,这可以满足不同来源样品的平行分析。用计算机控制的高分辨荧光扫描仪可获得结合于芯片上目的基因的荧光信号,通过计算机处理即可给出目的基因的结构或表达信息。

杂交条件的选择与研究目的有关,多态性分析或者基因测序时,每个核苷酸或突变位点都必须检测出来。通常设计出一套四种寡聚核苷酸,在靶序列上跨越每个位点,只在中央位点碱基有所不同,根据每套探针在某一特点位点的杂交严谨程度,即可测定出该碱基的种类。如果芯片仅用于检测基因表达,只需设计出针对基因中的特定区域的几套寡聚核苷酸即可。表达检测需要长的杂交时间,更高的严谨性,更高的样品浓度和低温度,这有利于增加检测的特异性和低拷贝基因检测的灵敏度。突变检测,要鉴别出单碱基错配,需要更高的杂交严谨性和更短的时间。

此外,杂交反应还必须考虑杂交反应体系中盐浓度、探针GC含量和所带电荷、探针与芯片之间连接臂的长度及种类、检测基因的二级结构的影响。有资料显示探针和芯片之间适当长度的连接臂可使杂交效率提高150倍。连接臂上任何正或负电荷都将减少杂交效率。由于探针和检测基因均带负电荷,因此影响他们之间的杂交结合,为此有人提出用不带电荷的肽核酸(PNA)做探针。虽然PNA的制备比较复杂,但与DNA探针比较有许多特点,如不需要盐离子,因此可防止检测基因二级结构的形成及自身复性。由于PNA-DNA结合更加稳定和特异,因此更有利于单碱基错配基因的检测。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序