丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

 t分布

互联网

2734

网络

第二节 t分布

从数理统计的理论上讲,并且上节的实例也已说明,在总体均数为μ,总体标准差为σ的正态总体中随机抽取n相等的许多样本,分别算出样本均数,这些样本均数呈正态分布。而当样本含量n不太小时,即使总体不呈正态分布,样本均数的分布也接近正态。在下式中,

由于μ与(样本均数的标准差)都是常量,又

X呈正态分布,所以u

  也呈正态分布。但实际上总体标准差往往是不知道的,上式分母中的σ要由S替代,成为 ,那么由于样本标

准差有抽样波动,SX也有抽样波动,于是,在用S代替σ

后上式等号右边的变量便不呈正态分布而呈t分布,其定义公式是

(6.5)

t分布也是左右对称,但在总体均数附近的面积较正态分布的少些,两端尾部的面积则比正态分布的多些。t分布曲线随自由度而不同(如图6.1)。随着自由度的增大,t分布逐渐接近正态分布,当自由度为无限大时,t分布成为正态分布。

图6.1 t分布(实线)与正态分布(虚线)

  与正态分布相似,我们把t分布左右两端尾部面积之和α=0.05(即每侧尾部面积为0.025)相应的t值称为5%界,符号为t 0.05,, ,这里ν是自由度。把左右两端尾部面积之和α为0.01相应的t值称为1%界,符号为t 0.01,, 。t的5%界与1%界可查附表3,t值表。例如当自由度为10-1=9时,t 0.05 , 9 =2.262,t 0.01 , 9 =3.250。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序