丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

离心技术与离心机类型

互联网

3271

最大速度方法

(1)移动界面超速离心法

含几个组分的样品在足够高的离心场中离心时,每种颗粒都达到其最大沉降速度,这时样品开始分离。离心管的上层逐渐形成透明的上清液,并形成对应于样品各组分的一系列浓度界面,界面的移动相对于每种组分来说是特征的。

虽然利用这种方法不一定能实现组分的纯化分离,但可以通过监测界面的移动来测定各组分的沉降速度。要想实现组分间的分离,必须在所需样品沉降之后停止离心过程。

沉积的样品再悬浮到新的溶剂中,并以较低的速度离心使大颗粒的污染物沉降,而被纯化的样品留在溶液中,经过反复多次地离心才能得到纯的样品,这种方法就叫差示沉降离心法,它对细胞组分间的分离非常有用。也可以通过逐渐增大转速的方法实现不同组分间的分离,如图1。

图1 细胞匀浆差示分离的示意图

(a)细胞匀浆;(b)细胞碎片;(c)线粒体、过氧化物酶体、溶酶体;(d)微粒体、核糖体;(e)细胞液;(可溶性蛋白质及小分子生物)

(2)移动区带超速离心法

差示离心法离心前各组分均匀分布在整个溶液中,所以分离一般不理想,而移动区带超速离心法是一种密度梯度(Dens 心Gradient)离心技术,在离心之前离心管中溶液的密度不同(从上到下密度增大)。

梯度介质中最大密度应小于样品物质的最小密度,其特点是物质的分离取决于样品物质颗粒的质量.即样品物质的沉降系数,而不是取决于样品物质的密度,因而适合于分离密度相近而大小和形状不同的物质,这属于一种非平衡态分离法。

当样品物质轻轻地铺在密度梯度介质的液面上,起动离心机,在离心力的作用下,一定时间后便形成不同物质的区带。当继续离心时每个区带会逐一达到管底,所以,在沉降最快的区带到达管底之前要停止离心,并将每个区带分部收集。最常用的制备密度梯度的化合物有蔗糖、甘油、氯化铯和硫酸铯等。

等密度方法

等密度离心法也叫沉降平衡法。所谓等密度是指样品密度与介质的密度相等,实际上是在梯度密度介质中进行的。该技术的特点是沉降分离与样品物质的大小和形状无关,而取决于样品物质的密度。

这种方法非常类似于电泳中的PH 梯度等电聚焦方法,在离心时,颗粒依其密度的不同沉降或向上漂浮,直到移动到与自身的密度相同的溶剂梯度中为止,其结果是依样品物质密度的不同在梯度溶剂中形成一个个区带。

在实验方法上可以采用预先制备密度梯度溶液的方法,一般先制备两种储备液,它们的浓度决定最终所形成梯度溶液的极限。

可以通过分步减小密度,从离心管底部到上部逐渐加液的方式形成不连续梯度溶液,也可以通过一个梯度混合器产生连续梯度密度。储备液一般使用两种密度的蔗糖溶液或两种密度的氯化铯溶液来制备。样品一般铺在溶液的表面,然后开始离心。

在实验方法上也可以采用平衡密度梯度法,在这种离心法中,介质的梯度不是预先配制,而是在离心过程中,由于离心力的作用而逐渐形成。样品物质和氯化铯的浓盐溶液充分混合均匀,离心开始之后,铯盐由于离心力的作用,自离心管口至离心管底形成连续递增的密度梯度。

生物样品中不同组分物质在离心过程中沉降或上浮以寻找与自身密度相同的溶液密度梯度区带,不同的物质最终到达相应的区带,从而实现分离。这种方法依赖于在离心场的作用下低分子量的铯盐密度梯度的形成,一般需要长时间的离心(2~3天)。

显然,样品物质的密度应介于介质梯度中最大和最小密度之间,否则,样品将沉到离心管的底部或漂浮到溶液的顶层。

无论是采用哪种操作方式,最终都要分别收集处在每一区带的样品组分,一般可采用下述两种方法实现:

(1)穿刺法

这是方便而又理想的部分收集方法。用一根金属空心针从离心管底刺人管内,不同区带内的组分自下而上地先后从针管内分别流出,然后用部分收集器分别收集。

(2)取代法

在离心管口加一个带有收集导管的塞子,塞子上同时装有一根输液导管插入离心管的管底,从输液管中注入高密度的离心介质.其密度高于离心管中所形成的最大密度。当取代液不断注入时离心管中的溶液逐渐上升,并不断从收集导管中流出,然后用部分收集器分别收集。


离心机类型

通常所使用的离心机根据转子转速大小的不同可分为普通离心机、高速离心机和超速离心机三类。

(1)普通离心机

一般来说,最大转速不超过6000r/min 者属普通离心机;如国产的80—1型,LXJ—Ⅱ型等。离心机转速与相对离心力的测算,如图2—37。

普通离心机转子在室温下运转,转子室内的温度一般无法控制,转子有固定角度式和悬挂吊格式。

离心时形成的固体沉淀层叫压板,液相部分称之为上层清液。用倾注法分离两相。

(2)高速离心机

转速可以达到25000r/min 者为高速离心机;转速在25000r/min 以上者为超速离心机。高速离心机一般带有制冷装置,因而转子室内的温度可以控制。转子室内的温度一般控制在4℃为宜。。其中大容量连续流动离心机的主要用途是从大量培养物(5~500 L)中收集酵母及细菌等。另一类是低容量冰冻离心机,型号甚多,其最大容量可达3L。这类离心机有各种内部可变换的角式和甩平式转头,它们多用于收集微生物、细胞碎片、细胞、大的细胞器、硫酸铵沉淀物、免疫沉淀物酶的粗提液等。特别需注意的是,每次离心前,应根据转头型号和样品多少,设置样品高度。

(3)超高速离心机

普通和高速离心机主要用于分离制备生物大分子物质和亚细胞成分;超速离心机有超过500000×g的离心力,能使亚细胞器分级分离,可用于分离病毒,也可用于测定蛋白质、核酸的相对分子质量等。

根据功能不同,又可分制备性超速离心机和分析性超速离心机。

由于转速高会产生大量的热量,因而这种离心机都附有冷冻装置,以降低转子室内温度。同时.转子是在真空下运转的,可以减小摩擦。分析性离心时,必须对固相颗粒沉降过程跟踪监测。为此,超速离心机附有一套光学系统,光路与离心管垂直,并透过离心管内的溶液,同时测定光密度或透光率,也可以检测沉降颗粒的沉降速度和移动界面。这些测定有助于对样品的状况进行分析。

①制备性超速离心机:

主要由驱动和速度控制、温度控制、真空系统和转头四部分组成。

驱动和速度控制:大多数超速离心机的驱动装置是由水冷或风冷电动机通过精密齿轮箱或皮带变速,或直接用变频马达连接到转头轴构成。由于驱动轴的直径仅仅0.476cm,这样,在旋转期间细轴可有一定的弹性弯曲,以便适应转头的轻度不平衡,而不至于引起震动或转铀损伤。利用变阻器和带有旋速器的控制器来选择转头的转速。除速度控制系统以外,还有一个过速保护系统,以防止转速超过转头最大规定转速时引起的转头撕裂或爆炸。为此目的,离心腔总是用能承受此种爆炸的装甲钢板密闭。

温度控制:其温度控制是由安置在转头下面的红外线射量感受器直接而连续地监测转头的温度,以保证更准确更灵敏的温度调控。

真空系统:当转速超过4000 r/min 时,空气与旋转的转轴之间的摩擦生热成为严重的问题。为了消除这种热源.超速离心机一般增添了真空系统。将离心腔密封,并通过两个串联工作的真空泵系统抽成真空。第一个工作泵与一般实验室的机械真空泵相同,它可抽真空到13.33~666Pa。一旦离心腔内的压力减低到33.33Pa 以下,水冷扩散泵也开始工作。利用这两个泵,可使真空度达到并维持在0.13~0.26Pa。在摩擦力降低的情况下,速度才有可能升高到所需的转数。

转头:制备性超速离心机采用的转头有各种各样.一般可分为两大类:角式转头和甩平式转头。角式转头的孔穴与旋转轴心之间的角度在20~45度之间。这类转头的优点是具有较大的容量,速度较高。另一种甩平式转头则由一个转头上悬吊着6个自由活动的吊桶〔离心管套〕构成。当转头静止时,这些吊柄垂直悬挂;当转头在离心力的作用下转速达到200~800 r/min 时.吊桶即甩平到水平位置。

这种转头主要是为了密度梯度沉降法而设计的。其主要优点是梯度物质可放在保持垂直的离心管中,而离心时管子保持水平。在水平位置沉降到离心管不同区域的样品呈现出横过离心管的带状,而不像角式转头中那样成角度。因此,当从转头中取出离心管时.不会像在角式转头中那样,沉降成分重新定位。这类转头的缺点是:形成区带所需的时间间矩长,

②分析性超速离心机分析性超速离心机使用了特殊设计的转头和检测系统,以便连续地监视物质在一个离心场的沉降过程。

分析性超速离心机的转头是椭圆形的,此转头通过一个有天性的轴联接到一个高速的驱动装置上。转头在一个冷冻的和真空的胶中旋转。转头上有2~6个装离心杯的小室,离心杯呈扇形,可上下透光。离心机中装有一个光学系统,在整个离心期间都能通过紫外吸收或折射率的变化监测离心杯中沉降着的物质。在预定的时间可以拍摄沉降物质的照片、杯中物质沉降过程中,重颗粒和轻颗粒之间形成的界面就像一个折射的透镜,在检测系统的照相底板上产生了一个”峰”,出于沉降不断进行,界面问前推进,因此峰也移动。从峰移动的速度可以得到物质沉降速度的指标。

分析性超速离心机主要用于生物大分子的相对分子质量测定,估算样舱的纯度和检测生物大分子构象的变化等。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序