丁香实验_LOGO
登录
提问
提问
我要登录
|免费注册
丁香通
丁香实验推荐阅读
第一篇 免疫系统的组织结构-- 绪论--免疫学发展简史-- 免疫学的经验时期

网络 第一章 绪论--免疫学发展简史   免疫学是一门新兴的学科。它是研究机体免疫系统的组织结构和生理功能的科学。免疫系统的重要生理功能就是对“自己”和“非己”抗原的识别及应答。免疫系统在免疫功能正常的条件下,对“非己”抗原产生排异效应,发挥免疫保护作用,如抗感染免疫和抗肿瘤免疫。但在免疫功能失调的情况下,免疫应答可造成机体组织损伤,产生过敏性疾病。如打破对自身抗原的耐受,则可对自身抗原产生免疫应答,出现 自身免疫 现象,或造成组织损伤,就发生了 自身免疫 病。因此免疫系统以它识别和区分“自己”和“非己”抗原分子的能力,起着排导和维持自身耐受的作用。运用免疫学理论和方法对相关疾病进行预防、诊断和治疗的研究也是当代免疫学研究中的重要领域。免疫系统是机体的一个重要的功能系统,担负着免疫防御、免疫监视与免疫自稳的功能。人类应用免疫学方法预防传染病的历史,可以追溯到16世纪中国医学家用人痘苗预防天花的伟大实践。此后,免疫学经历了经典免疫学时期、近代免疫学时

丁香实验推荐阅读
 凝胶

网络 第四节 凝胶 在一定条件下,使高分子溶质或胶体粒子相互连接,形成空间网状结构,而溶剂小分子充满在网架的空隙中,成为失去流动性的半固体状体系,称为凝胶。这种凝胶化的过程称为胶凝。 一、凝胶的形成 当加酸于硅酸钠(水玻璃)后,可制成硅酸凝胶。将琼脂溶于热水中,配成2%琼脂高分子溶液,放冷后便形成凝胶。琼脂凝胶是一种常用的培养细菌的凝胶。 凝胶的形成是由于线形或分枝形高分子化合物或凝胶粒子连接起来形成的线状结构,经相互交联构成立体网架结构。溶剂分布在网眼之中,使其不能自由流动,成为半固体状。可见凝胶是处于溶液和固体高分子化合物之间的中间状态,兼有两者的性质,并有重要的实际意义。 生物体内的肌肉、脑髓、软骨、指甲、毛发、细胞膜等都是凝胶。 二、凝胶的几种性质 (一)弹性 凝胶的特点是具有网状结构,充填在网眼里的溶剂不能自由流动,而相互交联成网架的高分子或溶胶粒子仍有一定柔顺性,使凝胶成为弹性半固体。 各种凝胶在冻态时(溶剂含量多的叫冻)弹性大致

丁香实验推荐阅读
  高分子化合物溶液

网络 第三节  高分子化合物溶液 一、高分子化合物的概念 在自然界中,存在着大量高分子化合物。随着科学技术的发展,人们又合成了大量的高分子化合物。它们的共同特点是都具有很大的相对分子质量。如生物体中的蛋白质、核酸、糖原、淀粉、纤维等都是高分子化合物。它们是由许多重复的原子团或分子残基所组成,这些较小的原子团或分子残基叫做单体。如淀粉分子是由成千上万个葡萄糖分子残基按一定方式联结而成的。天然橡胶分子是由许多异戊二烯(CH2=C(CH3)-CH=CH2)的单体联结而成的大分子。 高分子化合物是大分子,其粒子的形状是复杂的。不同高分子化合物,在溶液中分子的形状往往也有很大的差异。例如,γ-球蛋白的分子是球形分子,脱氧核糖核酸分子是线形分子。线形分子在不同条件下形状有时也不一样,有的是比较伸展的线条形,有的则是卷曲的无规则线团。由于分子形状不同,它们在运动中的相互干扰作用也不一样。球形分子互相干扰少,而线形分子则互相干扰大,因此线形分子的粘度就大。 高分子化合物粒子具有许多亲溶剂

丁香实验推荐阅读
 溶胶

网络 第二节 溶胶 溶胶的分散相粒子即胶体粒子,是由许多分子或原子聚集而成的,因此分散相与分散介质之间存在着相界面,形成多相体系,于是出现了大量界面现象。 一、界面现象 物体的表面是指它与空气或与本身的蒸气接触的面,而物体的表面与另一相接触的面则称为界面。凡是界面上发生的一切物理化学现象统称为界面现象。 (一)界面张力和界面能 由于物质分子与分子间存在相互吸引力的作用,位于表面层的分子和它的内部分子所处的情况是不同的。以液体为例来说明。图9-1中A为处于液体内部的分子,它从各方向所受到相邻分子的引力是均衡的,即作用于该分子上的吸引力的合力等于零。B处于液体表面层的分子,它所受到相邻分子吸引力的合力等于零,而且其合力是指向液体内部并与液面相垂直的。液体表面层的其它分子也都受到同样力的作用,其结果是这种合力企图把表面层的分子拉入液体内部,因面液体表面有自动缩小的倾向。如果想使表面增大,就必须使分子从液体内部反抗引力将其拉到表面,这一过程需要消耗一定量的功,这种功成为表面

丁香实验推荐阅读
 比色分析测量仪器和测量方法

网络 第二节 比色分析测量仪器和测量方法 比色分析法通过比较溶液对光的吸收程度以测定物质的含量。 一、比色测量仪器 (一)比色测量仪器的基本部件 比色测量仪器一般包括以下五大部件(图8-4)。 图8-4 比色测量仪器部件示意图 1.光源 在光电比色计和可见光分光光度计中,采用6~12V的钨灯,其最适宜的波长范围是360~1000nm,为使光的强度稳定,须用稳压装置来稳定电压。 2.波长控制器 在光电比色计中采用滤光片作为波长控制器。滤光片是有色玻璃片,其作用是从光源发出的连续光谱中分出实验所需的某一特定波长范围的光,即获得适当波长的近似单色光。 选择滤光片的原则是滤光片最易透过的光,也就是溶液最易吸收的光。即滤光片的颜色与溶液的颜色应互为补色,这是因为有色溶液对它的互补色光有最大的吸收。581-G型光电比色计通常只有红、绿和蓝三块滤光片。例如,要测定KMnO4溶液,就应选用绿色滤光片。 分光光度计

丁香实验推荐阅读
 滴定分析-- 滴定分析概念

网络 第七章 滴定分析 分析化学是研究物质组成的测定方法与有关原理的一门科学。它分为定性分析和定量分析两在部分。定性分析的任务是确定物质的组成成分;定量分析的任务是在定性分析的基础上进一步确定各组成成分的相对含量。 定量分析通常可分为化学分析和仪器分析。化学分析是以物质化学性质为基础的分析方法,它包括重量分析和滴定分析。仪器分析是以物质的物理或物理化学性质为基础,应用特殊的检验仪器进行分析的方法。 滴定分析由于其简便、快速等特点且有足够的准确度,不仅在化学、化工领域有很大的实用性,医药卫生等工作中也有广泛的应用。 第一节 滴定分析概念 一、滴定分析的特点和方法 滴定分析是通过“滴定”来实现的一种分析方法。在滴定过程中,使用的已知准确的溶液称为标准溶液,被滴定的溶液叫做试样溶液。当标准溶液与被测组成的反应恰好完全时,即为反应的理论终点,称为化学计量点附近发生的、容易观察到的变化来确定。若反应本身无此种变化,就须借助指示剂。指示剂所指示的反应终点称为滴定终点。

丁香实验推荐阅读
 糖类-- 单糖

网络 第二十一章 糖类 糖类化合物亦称碳水化合物,是自然界存在最多、分布最广的一类重要的有机化合物。葡萄糖、蔗糖、淀粉和纤维素等都属于糖类化合物。 糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。此外,核酸的组成成分中也含有糖类化合物――核糖和脱氧核糖。因此,糖类化合物对医学来说,具有更重要的意义。 糖类化合物由C,H,O三种元素组成,分子中H和O的比例通常为2:1,与水分子中的比例一栗,可用通式Cm(H2o )n表示。因此,曾把这类化合物称为碳水化合物。但是后来发现有些化合物按其构造和性质应属于糖类化合物,可是它们的组成并不符合Cm(H2o )n 通式,如鼠李糖(C6H12O5)、脱氧核糖(C5H10O4)等;而有些化合物如乙酸(C2H4O2)、乳酸(C3H6O3)等,其组成虽符合通式Cm(H2o )n,但结构与性质却与糖类化合物完全不同。所以,碳水化合物这个名称并

丁香实验推荐阅读
 脂类和甾族化合物-- 油脂

网络 第二十章 脂类和甾族化合物 在人体和动植物组织成分中,含有油脂和类脂,它们总称为脂类。油脂(脂肪和油)是甘油和高级脂肪酸生成的酯。类脂是构造或理化性质类似油脂的物质,主要包括磷脂、糖脂、蜡和甾族化合物。脂类化合物的共同特征是:难溶于水而易溶于乙醚、氯仿、丙酮、苯等有机溶剂;都能被生物体所利用,是构成生物体的重要成分。 脂类在生理上具有非常重要的意义。脂肪在体内氧化时放出大量热量,作为能源的储备物;它在脏器周围能保护内脏免受外力撞伤;在皮下有保温作用。脂肪还是维生素A,D,E和K等许多活性物质的良好溶剂。类脂是组织细胞的重要成分,它们在细胞内和蛋白质结合在一起形成脂蛋白,构成细胞的各种膜,如细胞膜和线粒体膜等。 甾族化合物是一类重要的天然产物,广泛地存在于动植物组织中。例如存在于动物体内的胆甾醇、胆汁酸、维生素D、肾上腺皮质激素和性激素;存在于植物中的强心苷和甾族生物碱等。它们在生理活动中都起着十分重要的作用。 第一节 油脂 一、油脂的组成 油脂是油和脂肪

丁香实验推荐阅读
 生物碱

网络 第二节 生物碱 一、 概述 在生物体内成分中,含氮碱基的有机化合物,能与酸反应生成盐类,将此类化合物称为生物碱。它是一类存在于生物(主要是植物)体内、对人和动物有强烈生理作用的含氮的碱性物质。生物碱的分子构造多数属于仲胺、叔胺或季胺类,少数为伯胺类。它们的构造中常含有杂环,并且氮原子在环内。生物碱常常是很多中草药中的有效成分,例如,麻黄中的平喘成分麻黄碱、黄连中的抗菌消炎成分小檗碱(黄连素)和长春花中的抗癌成分长春新碱等。 生物碱大多数来自植物界,少数也来自动物界,如贤上腺素等。生物体内生物碱含量一般较低。至今分离出来的生物碱已有数千种,其中用于临床的近百种。 二、生物碱的分类和命名 生物碱的分类方法有多种。较常用和比较合理的分类方法是根据生物碱的化学构造进行分类,如麻黄碱属有机胺类,一叶�碱、苦参碱属吡啶衍生物类,莨菪碱属莨菪烷衍生物类,喜树碱属喹啉衍生物类,常山碱属喹唑酮衍生物类,茶碱属嘌呤衍生物类,小檗碱属异喹啉衍生物类,利血平、长春新碱属吲哚衍生物类等

丁香实验推荐阅读
 羧酸衍生物

网络 第二节 羧酸衍生物 一、酰卤、酸酐、酯的构造和命名 羧酸衍生物是指羧酸分子中,羧基中的羟基被其它原子或原子团取代后生成的化合物。 羧酸衍生物在构造上的共同之处是分子中均含有酰基 。 最常见的酰卤是酰氯和酰溴,他们可根据相应的酰基来命名。例如: 羧酸酯常根据相应的羧酸和醇来命名。一元醇的羧酸酯叫做“某酸某酯”。例如: 多元醇的羧酸酯命名时,通常是醇的名称在前,羧酸的名称在后,叫“某醇某酸酯”。例如: 酸酐是按照相应的羧酸的名称叫做某(酸)酐。例如: 二、酰卤、酸酐、酯的物理性质 低级的酰卤与酸酐都是具有强烈刺激性气味的液体,遇水即分解。高级的酰卤和酸酐为固体,不溶于水。 低级的羧酸酯是具有香味的液体,微溶于水,高级羧酸酯为蜡状固体,羧酸酯均溶于有机溶剂,许

丁香实验推荐阅读
 螯合物(内络合物)

网络 第四节 螯合物(内络合物) 一、螯合物的概念 螯合物又称内络合物,是螯合物形成体(中心离子)和某些合乎一定条件的螯合剂(配位体)配合而成具有环状结构的配合物。“螯合”即成环的意思,犹如螃蟹的两个螯把形成体(中心离子)钳住似的,故叫螯合物。 形成螯合物的第一个条件是螯合剂必须有两个或两个以上都能给出电子对的配位原子(主要是N,O,S等原子)。第二个条件是每两个能给出电子对的配位原子,必须隔着两个或三个其他原子,因为只有这样,才可以形成稳定的五原子环或六原子环。例如,在氨基乙酸根离子(H2N-CH2-COO-)中,给出电子的羟基氧和氨基氮之间,隔着两个碳原子,因此它可以形成稳定的具有五原子环的化合物。 四原子环在螯合物中是不常见的,六原子以上的环也是比较少的。中心离子有一定的电荷数,同时也有一定的配位数。Cu(Ⅱ)带有二个正电荷,它的配位数为4。氨基乙酸根离子(H2N-CH2-COO-)既有氨基氮,都能给出电子对;氨基氮能满足中心离子的配位数,羟基氧

丁香实验推荐阅读
 配位化合物-- 配合物的基本概念

网络 第五章 配位化合物 配位化合物简称配合物,又称络合物,是一类非常广泛和重要的化合物。随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的意义,配合物不仅在化学领域里得到广泛的应用,并且对生命现象也具有重要的意义。例如,在植物生长中起光合作用的叶绿素,是一种含镁的配合物;人和动物血液中起着输送氧作用的血红素,是一种含有亚铁的配合物;维生素B12是一种含钴的配合物;人体内各种酶(生物催化剂)的分子几乎都含有以配合状态存在的金属元素。因此学习有关配合物的基本知识,对学习医学来说也是十分必要的。 第一节 配合物的基本概念 一、配合物的定义 如果在硫酸铜溶液中加入氨水,首先可得到浅蓝色碱式硫酸铜[Cu(OH)2]SO4沉淀,继续加入氨水,则沉淀溶解而得到深蓝色溶液。显然由于加入过量的氨水,NH3分子与Cu2+离子间已发生了某种反应。 经研究确定,在上述溶液中生成了深蓝色的复杂离子[Cu(NH3)4]2+。从溶液中还可结晶出深蓝色[[Cu(NH3)4]S

丁香实验推荐阅读
 分子结构

网络 第二节 分子结构 所谓分子结构通常包括下面一些内容:分子中直接相邻的原子间的强相互作用力,即化学键问题,分子的空间构型问题;分子之间还有一种弱的相互作用力,即分子间力问题;此外分子间或分子内的一些原子间还可能形成氢键。 本节主要简介杂化轨道理论,有关氢键的问题留在下一节讨论。 一、化学键的概念 分子或晶体中相邻原子间强烈的相互作用力称为化学键。化学键的基本类型有:离子键(电价键)、共价键、配价键和金属键等。 以阳离子和阴离子之间静电引力形成的化学键 叫离子 键。 分子中原子间通过共用电子对所形成的化学键为共价键。 配价键是一种特殊的共价键,其共用电子对是一个原子单独提供的。这种由一个原子单独提供一对电子与另一个原子共用所形成的共价键,叫配位共价键,简称配价键。 自1916年路易斯提出经典的共价键理论以来,共价键理论有了很大的发展。现代共价键理论有两种,一是价键理论,二是分子轨道理论。本书不介绍轨道理论。 (一)价键理论的基本要点

丁香实验推荐阅读
 溶液的渗透压

网络 第三节 溶液的渗透压 渗透作用是自然界的一种普遍现象,它对于人体保持正常的生理功能有着十分重要的意义。下面讨论渗透作用的基本原理、渗透压及其在医学上的意义。 一、渗透现象和渗透压 在蔗糖浓溶液上小心加入一层清水,水分子即从上层渗入下层,蔗糖分子也由下层涌入上层,直到蔗糖溶液的浓度均匀为止。一种物质的粒子自发地分布于另一种物质中的现象称为扩散。 如果将蔗糖水溶液与水用半透膜隔开(图1-2甲),使膜内和膜外液面相平,静置一段时间后,可以看到膜内溶液的液面不断上升(图1-2乙),说明水分子不断地透过半透膜进入溶液中。溶剂透过半透膜进入溶液的自发过程称为渗透现象。不同浓度的两种溶液被半透膜隔开时都有渗透现象发生。 半透膜是一种只允许某些物质透过,而不允许另一些物质透过的薄膜。上面实验中的半透膜只允许水分子透过,而蔗糖分子却不能透过。细胞膜、膀胱膜、毛细血管壁等生物膜都具有半透膜的性质。人工制造的火棉胶膜、玻璃纸等也具有半透膜的性质。 上述渗透现象产生的原因是蔗糖

丁香实验推荐阅读
效应分子及细胞内信使

佚名 G蛋白活化之后,可作用于腺苷酸环化酶和磷脂酶C等效应分子(Effector)上。有的α亚基(Gs)可以激活腺苷酸环化酶;有的α亚基(αi)可以抑制腺苷酸环化酶。腺苷酸环化酶催化ATP生成环状AMP(cAMP)的反应,因此细胞内的cAMP水平在配体与受体结合后,可受G蛋白α亚单位的作用而升高或降低,从而将细胞外信号转变为细胞内信号。这种细胞内信号可再作用于下游分子。这种细胞内信号的传递方式是G蛋白偶联型受体传递信号的主要方式,这些细胞内信号分子被称为细胞内信使。细胞内信使亦被称为第二信使。已知的细胞内信使包括cAMP、cGMP、甘油二酯(DAG)、IP3、和Ca2+等等(图21-12、13、14)。G蛋白的α亚基种类、其作用的效应分子及所调节的细胞内信使可参见表21-3。 图21-12 cAMP的生成与水解 图21-13 cGMP的生成 图21-14 DAG和IP3的生成 细胞内信使一般具有以下三个特点:(1)多为小分子,且不位于能量代谢途径的

丁香实验推荐阅读
细胞内信使作用的主要靶分子

佚名 活化的Gα可作用于相应的效应分子,从而使相应的细胞内信使浓度发生迅速的改变。这些细胞内的信使可分别作用于相应的靶分子,从而使得细胞中的各种酶类和蛋白分子的活性发生改变。这些细胞内信使所作用的靶分子主要为各种蛋白激酶(表21-3) (1)蛋白激酶A cAMP作用于cAMP依赖性蛋白激酶(cAMP-dependent Protein Kinase,简称为cAPK),亦称为蛋白激酶A(Protein Kinase A, PKA),目前后一种命名较为公认。cAMP可以作为该激酶的变构激活剂,使无活性的蛋白激酶A转变为有活性的蛋白激酶A(详见第十一章,图11-4)。活化了的蛋白激酶A可作用于多种与糖脂代谢相关的酶类、一些离子通道和某些转导因子,使它们发生磷酸化并改变其活性状态。 (2)蛋白激酶G 细胞内的另一种环核苷酸信使为环鸟苷酸-cGMP。cGMP作用于cGMP依赖性蛋白激酶-cGMP�dependent Protein Kinase, cGPK),亦称为蛋白激酶G(Pr

丁香实验推荐阅读
单次跨膜受体及其信号转导

佚名 多种生长因子和细胞因子的受体为一类结构上为单次跨膜的糖蛋白。与七次跨膜受体(G蛋白偶联型受体)相对应,将其称为单次跨膜受体,即它们的跨膜区仅为单向一次性的,而不像七次跨膜受体那样有反复的跨膜区段。 单次跨膜受体依照其结构特点可进一步分成多个家族和亚家族,其分类见表21-4及图21-7。� 图21-17 各类单次跨膜受体的代表性举例 Receptor Type Family Examples Characteristics Protein-tyosine kinase receptors       PDGF receptor PDGFR-α,PDGFR-βSCFR Five immunoglobu

丁香实验推荐阅读
两条典型的信号转导途径

佚名 两条典型的信号转导途径: (1)表皮生长因子受体介导的信号转导途径 表皮生长因子与其受体-表皮生长因子受体结合后可引发一系列细胞内变化,最终使细胞发生分化或增殖。表皮生长因子受体是一种受体酪氨酸蛋白激酶,而受体酪氨酸蛋白激酶→Ras→MAPK级联途径是表皮生长因子刺激信号传递到细胞核内的最主要途径。它由以下成员组成:表皮生长因子受体→含有SH2结构域的接头蛋白(如Grb2)→鸟嘌呤核苷酸释放因子(如SOS)→Ras蛋白→MAPKKK(如Raf1)→MAPKK→MAPK→转录因子等(图21-24)。 图21-24 EGF受体介导的信号转导过程 表皮生长因子与受体结合后,可以使受体发生二聚体化,从而改变了受体的构象,使其中的蛋白酪氨酸激酶活性增强,受体自身的酪氨酸残基发生磷酸化,磷酸化的受体便形成了与含SH2结构域的蛋白分子Grb2结合的位点,导致Grb2与受体的结合。Grb2中有两个SH3结构域,该部位与一种称为SOS的鸟苷酸交换因子结合,使之活性改变,SOS则进一

丁香实验推荐阅读
癌基因的发现

佚名 现已知道在肿瘤发生中,作为环境因素的病毒、化学致癌物和射线,它们作用于机体内的靶分子都是DNA,在研究肿瘤病毒如何使宿主细胞转化和研究肿瘤DNA能否使培养的经两条实验途径中,殊途同归,发现了癌基因,早在本世纪初,Rockefeller研究所的Rous医生将鸡肉瘤组织匀浆后的无细胞滤液皮下注射于正常鸡,发现可以引起肿瘤,可惜当时对病毒还缺乏认识,直到五十年代才重新发现原来致瘤的因素是病毒,并以Rous医生的名字命名为罗氏肉瘤病毒(Rous Sarcoma Virus ,RSV)。1975年,Bishop从RSV中分离到第一个病毒癌基因src,该基因编码分子量为60kDa的磷蛋白质,以pp60src表示。   1976年Stehelin以实验证明正常鸡成纤维细胞 基因组 中存在有与病毒癌基因src的同源序列。此后陆续发现许多禽类和鼠类病毒部基因也有类似情况,即宿主细胞基因组中含有病毒癌基因的同源序列,称之为细胞癌基因(c-oncogene,c-onc)。

丁香实验推荐阅读
细胞癌基因的激活

佚名 细胞癌基因的激活是指原本不致癌c-onc在特定的情况下转变成致癌性的,大体上有以下几种激活方式。   1、插入激活 例如逆转录病毒MoSV感染鼠类成纤维细胞后,病毒 基因组 的LTR整合到细胞癌基因c-mos邻近处,使c-mos处于LTR的强启动子和增强子作用之下而被激活,导致成纤维细胞转化为肉瘤细胞,又如禽类白细胞增生病毒ALV的E成分整合到鸡细胞基因组c-myc附近。可使c-myc激活。因此在基因治疗中使用逆转录病毒 载体 时必需考虑细胞癌基因的插入激活问题。 2、突变激活 典型的是各种ras基因的激活,参看表22-2。 表22-2 正常Ras蛋白和转化Ras蛋白中氨基酸的变异 ras基因 氨基酸的位置 12 13 59 61 H

提问
48 小时有问必答
扫一扫
丁香实验小程序二维码
添加小程序
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序