丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Statistical Framework for Gene Expression Data Analysis

互联网

372
DNA (mRNA) microarray, a highly promising technique with a variety of applications, can yield a wealth of data about each sample, well beyond the reach of every individual’s comprehension. A need exists for statistical approaches that reliably eliminate insufficient and uninformative genes (probe sets) from further analysis while keeping all essentially important genes. This procedure does call for in-depth knowledge of the biological system to analyze.
We conduct a comparative study of several statistical approaches on our own breast cancer Affymetrix microarray datasets. The strategy is designed primarily as a filter to select subsets of genes relevant for classification. We outline a general framework based on different statistical algorithms for determining a high-performing multigene predictor of response to the preoperative treatment of patients. We hope that our approach will provide straightforward and useful practical guidance for identification of genes, which can discriminate between biologically relevant classes in microarray datasets.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序