丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Protein Structure Analysis Online

互联网

1446
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

Computational biology/chemistry tools are used in most areas of life/health science research. These methods are continually being developed and their use can present difficulties for both experienced and novice investigators. To facilitate the use of these applications, many packages have been implemented online during these last 5 years. This unit focuses on online computational methods with a special emphasis on structural refinement/atomic simulations, protein electrostatic calculations, searches for functional sites, searches for druggable pockets, protein docking and small molecule docking, and prediction of potential impact of amino acid variations on the structure and function of the protein molecules. Curr. Protoc. Protein Sci. 50:2.13.1?2.13.23. © 2007 by John Wiley & Sons, Inc.

Keywords: structural bioinformatics; electrostatics; simulations; docking; on?line tools; druggable pocket

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Visualization, Structural Refinement, Simulations
  • Electrostatics
  • Finding Hot Spots and Functional Sites
  • Prediction of Druggable Pocket
  • Protein‐Protein and Protein–Small Molecule Interactions
  • Analysis of Point Mutations
  • Conclusion
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure Figure 2.13.1 Flowchart of the RECON algorithm. The RECON (REsidue CONtacts) Web server is intended to provide the scientific community with a publicly available tool capable of predicting intra‐residue contacts by a correlated mutation method. The user submits an amino acid sequence, and, after several steps as outlined in the flowchart, the RECON server outputs a list of predicted contacting residues. The right panel summarizes the goal, which is to predict residue contacts within the 3‐D structure of a protein without prior knowledge of the 3‐D structure. CD‐HIT is a tool for clustering large protein databases at different sequence identify levels.
    View Image
  •   Figure Figure 2.13.2 The Protein Continuum Electrostatics (PCE) Web tool computes the electrostatic potentials and p K a values in a protein. Initiation of a calculation job starts with uploading a pdb file and selecting the dielectric constants and the ionic strength, as well as the titratable groups. Users can obtain various data, including electrostatic potential values mapped onto the molecular surface. An example of electrostatic potential distributions on the lysozyme surface (PDB code 7lyz) from 3.0 kcal/mol/electron (red) to +3.0 kcal/mol/electron (blue) is shown here; these images are returned by the PCE server.
    View Image
  •   Figure Figure 2.13.3 Flowchart of computations performed by the H++ server. The input is a structure file in either PDB or PQR (PDB + charges + radii) format. The output includes computed p K 1/2 values for all titratable groups, as well as titration curves, isoelectric point, and the original structure, in which the protonation states of all ionization groups have been made consistent with the calculated p K values. The generated structure is available in several formats used by popular molecular modeling packages.
    View Image
  •   Figure Figure 2.13.4 Pocket prediction with Q‐SiteFinder. This method implements an energy‐based approach for the prediction of druggable pockets. A geometry‐based method is also implemented. Here the prediction is carried out on the X‐ray structure of coagulation factor X (PDB entry 1fjs, shown as cartoon in magenta), a serine protease, cocrystallized with a small ligand (yellow spheres). The top predicted binding pocket is shown in dark blue. This predicted region is indeed the catalytic site of the protein. This site is predicted to be at least 340 Å3 , a size well suited for binding drugs. The figure was generated using PyMOL.
    View Image
  •   Figure Figure 2.13.5 The PROTCOM database provides users with a searchable database of protein complexes enhanced with domain‐domain structure information. The 3‐D structures are extracted from the Protein Databank and are subjected to a parser to separately treat two‐chain, multiple‐chain, and single‐chain entries. The result is a binary complex (A:B) made from the original entries (in the case of a two‐chain complex), from all possible combinations of interacting monomers (in case of multi‐chains complexes), or from the parsed domains (in the case of single‐chain proteins). The entries are further parsed to remove cases with very large or very small interfacial areas.
    View Image
  •   Figure Figure 2.13.6 PolyPhen processing flowchart. PolyPhen is a tool to predict possible impacts of amino acid substitution on the structure/function of a protein. It combines information on sequence features, multiple alignment with homologous proteins, and structural parameters to make a prediction.
    View Image

Videos

Literature Cited

Literature Cited
   Ahmad, S. and Sarai, A. 2004. Qgrid: Clustering tool for detecting charged and hydrophobic regions in proteins. Nucleic Acids Res. 32:W104‐107.
   Aloy, P., and Russell, R.B. 2002. Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. U.S.A. 99:5896‐5901.
   Aloy, P., and Russell, R.B. 2003. InterPreTS: Protein interaction prediction through tertiary structure. Bioinformatics 19:161‐162.
   Aloy, P., Böttcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., Gavin, A.C., Bork, P., Superti‐Furga, G., Serrano, L., and Russell, R.B. 2004. Structure‐based assembly of protein complexes in yeast. Science 303:2026‐2029.
   Autin, L., Steen, M., Dahlback, B., and Villoutreix, B.O. 2006. Proposed structural models of the prothrombinase (FXa‐FVa) complex. Proteins 63:440‐450.
   Bashford, D. 2004. Macroscopic electrostatic models for protonation states in proteins. Front. Biosci. 9:1082‐1099.
   Brady, G.P. and Stouten, P.F.W. 2000. Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14:383‐401.
   Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M. 1983. CHARMM. J. Comput. Chem. 4:187‐217.
   Chelliah, V., Blundell, T.L., and Fernandez‐Recio, J. 2006. Efficient restraints for protein‐protein docking by comparison of observed amino acid substitution patterns with those predicted from local environment. J. Mol. Biol. 357:1669‐1682.
   Chen, X., Lin, Y., and Gilson, M.K. 2002. The binding database. Biopolymers Nucleic Acid Sci. 61:127‐142.
   Comeau, S.R., Gatchell, D.W., Vajda, S., and Camacho, C.J. 2004. ClusPro: A fully automated algorithm for protein‐protein docking. Nucleic Acids Res. 32:W96‐99.
   Davis, F.P. and Sali, A. 2005. PIBASE: A comprehensive database of structurally defined protein interfaces. Bioinformatics 21:1901‐1907.
   Douguet, D., Chen, H.C., Tovchigrechko, A., and Vakser, I.A. 2006. DOCKGROUND resource for studying protein‐protein interfaces. Bioinformatics 22:2612‐2618.
   Elcock, A.H. 2001. Prediction of functionally important residues based solely on the computed energetics of protein structure. J. Mol. Biol. 312:885‐896.
   Fariselli, P., Olmea, O., Valencia, A., and Casadio, R. 2001. Progress in predicting inter‐residue contacts of proteins with neural networks and correlated mutations. Proteins Suppl 5:157‐162.
   Fernandez‐Recio, J., Totrov, M., Skorodumov, C., and Abagyan, R. 2005. Optimal docking area: A new method for predicting protein‐protein interaction sites. Proteins 58:134‐143.
   Finn, R.D., Marshall, M., and Bateman, A. 2005. iPfam: Visualization of protein‐protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21:410‐412.
   Fischer, D. 2006. Servers for protein structure prediction. Curr. Opin. Struct. Biol. 16:178‐182.
   Glaser, F., Pupko, T., Paz, I., Bell, R.E., Bechor‐Shental, D., Martz, E., and Ben‐Tal, N. 2003. ConSurf: Identification of functional regions in proteins by surface‐mapping of phylogenetic information. Bioinformatics 19:163‐164.
   Gong, S., Park, C., Choi, H., Ko, J., Jang, I., Lee, J., Bolser, D.M., Oh, D., Kim, D.S., and Bhak, J. 2005. A protein domain interaction interface database: InterPare. BMC Bioinformatics 6:207.
   Gordon, J.C., Myers, J.B., Folta, T., Shoja, V., Heath, L.S., and Onufriev, A. 2005. H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33:W368‐371.
   Grimm, V., Zhang, Y., and Skolnick, J. 2006. Benchmarking of dimeric threading and structure refinement. Proteins 63:457‐465.
   Hendlich, M., Bergner, A., Gunther, J., and Klebe, G. 2003. Relibase: Design and development of a database for comprehensive analysis of protein‐ligand interactions. J. Mol. Biol. 326:607‐620.
   Honig, B. and Nicholls, A. 1995. Classical electrostatics in biology and chemistry. Science 268:1144‐1149.
   Jambon, M., Imberty, A., Deleage, G., and Geourjon, C. 2003. A new bioinformatic approach to detect common 3D sites in protein structures. Proteins 52:137‐145.
   Jones, S. and Thornton, J.M. 2004. Searching for functional sites in protein structures. Curr. Opin. Chem. Biol. 8:3‐7.
   Kantardjiev, A.A. and Atanasov, B.P. 2006. PHEPS: Web‐based pH‐dependent protein electrostatics server. Nucleic Acids Res. 34:W43‐47.
   Kellenberger, E., Muller, P., Schalon, C., Bret, G., Foata, N., and Rognan, D. 2006. sc‐PDB: An annotated database of druggable binding sites from the Protein Data Bank. J. Chem. Inf. Model 46:717‐727.
   Krebs, W.G. and Gerstein, M. 2000. The morph server: A standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res. 28:1665‐1675.
   Kundrotas, P.J. and Alexov, E. 2007. PROTCOM: Searchable database of protein complexes enhanced with domain‐domain structures. Nucleic Acids Res. 35:D575‐579.
   Kundrotas, P.J. and Alexov, E. 2006a. Predicting 3D structures of transient protein‐protein complexes by homology. Biochim. Biophys. Acta 1764:1498‐1511.
   Kundrotas, P.J. and Alexov, E.G. 2006b. Predicting residue contacts using pragmatic correlated mutations method: Reducing the false positives. BMC Bioinformatics 7:503.
   Laskowski, R.A., Chistyakov, V.V., and Thornton, J.M. 2005. PDBsum more: New summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 33:D266‐268.
   Laurie, A.T. and Jackson, R.M. 2005. Q‐SiteFinder: An energy‐based method for the prediction of protein‐ligand binding sites. Bioinformatics 21:1908‐1916.
   Li, H., Robertson, A.D., and Jensen, J.H. 2005. Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704‐721.
   Li, H., Gao, Z., Kang, L., Zhang, H., Yang, K., Yu, K., Luo, X., Zhu, W., Chen, K., Shen, J., Wang, X., and Jiang, H. 2006. TarFisDock: A web server for identifying drug targets with docking approach. Nucleic Acids Res. 34:W219‐224.
   Lu, L., Lu, H., and Skolnick, J. 2002. MULTIPROSPECTOR: An algorithm for the prediction of protein‐protein interactions by multimeric threading. Proteins 49:350‐364.
   Martin, L., Catherinot, V., and Labesse, G. 2006. kinDOCK: A tool for comparative docking of protein kinase ligands. Nucleic Acids Res. 34:W325‐329.
   Miteva, M.A., Tuffery, P., and Villoutreix, B.O. 2005. PCE: Web tools to compute protein continuum electrostatics. Nucleic Acids Res. 33:W372‐375.
   Nayal, M., Hitz, B.C., and Honig, B. 1999. GRASS: A server for the graphical representation and analysis of structures. Protein Sci. 8:676‐679.
   Pieper, U., Eswar, N., Davis, F.P., Braberg, H., Madhusudhan, M.S., Rossi, A., Marti‐Renom, M., Karchin, R., Webb, B.M., Eramian, D., Shen, M.Y., Kelly, L., Melo, F., and Sali, A. 2006. MODBASE: A database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 34:D291‐295.
   Punta, M. and Rost, B. 2005. PROFcon: Novel prediction of long‐range contacts. Bioinformatics 21:2960‐2968.
   Ramensky, V., Bork, P., and Sunyaev, S. 2002. Human non‐synonymous SNPs: Server and survey. Nucleic Acids Res. 30:3894‐3900.
   Rocchia, W., Alexov, E., and Honig, B. 2001. Extending the applicability of the nonlinear Poisson‐Boltzmann equation: Multiple dielectric constants and multivalent ions. J. Phys. Chem. 105:6507‐6514.
   Rual, J.F., Venkatesan, K., Hao, T., Hirozane‐Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi‐Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette‐Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M. 2005. Towards a proteome‐scale map of the human protein‐protein interaction network. Nature 437:1173‐1178.
   Schneidman‐Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H.J. 2005. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 33:W363‐367.
   Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. 2005. The FoldX web server: An online force field. Nucleic Acids Res. 33:W382‐388.
   Shatsky, M., Dror, O., Schneidman‐Duhovny, D., Nussinov, R., and Wolfson, H.J. 2004. BioInfo3D: A suite of tools for structural bioinformatics. Nucleic Acids Res. 32:W503‐507.
   Sperandio, O., Miteva, M.A., Delfaud, F., and Villoutreix, B.O. 2006. Receptor‐based computational screening of compound databases: The main docking‐scoring engines. Curr. Protein Pept. Sci. 7:369‐393.
   Stein, A., Russell, R.B., and Aloy, P. 2005. 3did: Interacting protein domains of known three‐dimensional structure. Nucleic Acids Res. 33:D413‐417.
   Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., and Wanker, E.E. 2005. A human protein‐protein interaction network: A resource for annotating the proteome. Cell 122:957‐968.
   Suhre, K. and Sanejouand, Y.H. 2004. ElNemo: A normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 32:W610‐614.
   Toseland, C.P., McSparron, H., Davies, M.N., and Flower, D.R. 2006. PPD v1.0: An integrated, web‐accessible database of experimentally determined protein pKa values. Nucleic Acids Res. 34:D199‐203.
   Tovchigrechko, A. and Vakser, I.A. 2006. GRAMM‐X public web server for protein‐protein docking. Nucleic Acids Res. 34:W310‐314.
   Tynan‐Connolly, B.M. and Nielsen, J.E. 2006. pKD: Re‐designing protein pKa values. Nucleic Acids Res. 34:W48‐51.
   Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C. 2005. GROMACS: Fast, flexible and free. J. Comput. Chem. 26:1701‐1718.
   Vigers, G.P. and Rizzi, J.P. 2004. Multiple active site corrections for docking and virtual screening. J. Med. Chem. 47:80‐89.
   Villoutreix, B.O. 2002. Structural bioinformatics: Methods, concepts and applications to blood coagulation proteins. Curr. Protein Pept. Sci. 3:341‐364.
   Wang, R., Fang, X., Lu, Y., Yang, C.Y., and Wang, S. 2005. The PDBbind database: Methodologies and updates. J. Med. Chem. 48:4111‐4119.
   Zhang, J., Aizawa, M., Amari, S., Iwasawa, Y., Nakano, T., and Nakata, K. 2004. Development of KiBank, a database supporting structure‐based drug design. Comput. Biol. Chem. 28:401‐407.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序