丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Quantification of Poly(ADP-Ribose) In Vitro: Determination of the ADP-Ribose Chain Length and Branching Pattern

互联网

386
The structural integrity of eukaryotic genomes, to a great extent, depends on highly regulated and �coordinated enzymatic chromosomal poly(ADP-ribosyl)ation cycles that target chromatin proteins for specific covalent epigenetic poly(ADP-ribose) modification. As a result, the accurate determination of poly(ADP-ribosyl)ation amino acid specificity, as well as, a detailed characterization of the structural �complexity of the protein-bound ADP-ribose polymers generated, e.g., linear versus branched ADP-ribose chains, need to be carefully sorted out. In this chapter, we describe well-established and reproducible laboratory methods and protocols typically used to determine: (1) the ADP-ribose chain length(s) and (2) the molecular stoichiometry of the protein–poly(ADP-ribosyl)ation reaction, e.g., number of ADP-ribose chains/polypeptide unit. While the methodology described here is exclusively for in vitro purified systems that can be used with high reliability, the reader is advised that application of these protocols to whole cell extracts and tissue systems must take into consideration the rapid turnover rate of protein-bound ADP-ribose polymers in vivo. Indeed, these extremely low-abundance chromatin-bound polymeric molecules are notoriously characterized for displaying a short half-life, typically from a few seconds to a few minutes. We also discuss potential methodological pitfalls, such as: (1) the chemical stability of protein–(ADP-ribose)n adducts and (2) the requirement for polymeric radiolabeling.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序