Y Chromosome SNP Analysis Using the Single-Base Extension: A Hierarchical Multiplex Design
互联网
469
Single nucleotide polymorphisms (SNPs) are the most frequent polymorphisms described in the human genome, and their analysis is becoming an extensive routine in molecular biology, not only in the forensic field, but also in population and clinical genetics. In particular, SNPs located on the Y chromosome have a specific utility as forensic tools, and based on this fact, we have designed a strategy that allows us to identify the most frequent haplogroups in European populations. We selected 29 markers among the 245 binary polymorphisms described in the Y-Chromosome Consortium tree. The whole set was grouped into four multiplexes in a hierarchical way, allowing us to determine the final haplogroup using only one or two multiplexes. In this way, we only type in the best-case nine SNPs, and in the worst possible combination 17 SNPs, to define the haplogroup. The selected strategy to type the SNPs was a single-base extension method using the SNaPshot multiplex kit from Applied Biosystems, and detailed practical procedures are described here. With this hierarchical strategy adapted for European populations the massive typing of SNPs was avoided, and therefore the time and money involved in the study was also reduced.