丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Labeling DNA and Preparing Probes

互联网

1146
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

Labeling nucleic acids with radioisotopes, fluorophores, biotin, or digoxigenin enables their detection and analysis. When designing a labeling strategy, consider the intended application, the source of nucleic acid, and the type of label to incorporate. DNA oligonucleotides can be 5? end?labeled with radioisotopes in a reaction catalyzed by T4 polynucleotide kinase, or nonisotopic labels can be incorporated into oligonucleotides during DNA synthesis. Larger DNA substrates can be labeled by 5? end labeling (radioisotopes) or labeled uniformly along the length of the DNA by nick translation or random primed synthesis (using radioisotope or nonisotopic labels). The labeled DNA can be used for a variety of applications, including probing Southern blots, probing northern blots, in situ hybridization, quantifying real?time PCR results, and gel shift assays.

Keywords: nucleic acid probe; end?labeling; random primed synthesis; nick translation; radioisotope; fluorophore; biotin; digoxigenin; polynucleotide kinase; terminal transferase

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Safety Considerations
  • Protocols
  • Basic Protocol 1: 5′ End‐Labeling of DNA with T4 Polynucleotide Kinase
  • Basic Protocol 2: Labeling DNA by Nick Translation
  • Basic Protocol 3: Labeling DNA by Random Primed Synthesis
  • Support Protocol 1: Purification of Labeled Probes Using Gel‐Filtration Spin Columns
  • Reagents and Solutions
  • Understanding Results
  • Troubleshooting
  • Variations
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: 5′ End‐Labeling of DNA with T4 Polynucleotide Kinase

  Materials
  • 10 mCi/ml [γ‐32 P]adenosine‐5′‐triphosphate ([γ‐32 P]ATP; sp. act., 6000 Ci/mmol; lower‐specific‐activity ATP can be used, depending on the sensitivity needs)
  • 10× PNK buffer (see recipe or use buffer supplied with the enzyme)
  • DNA substrate with free 5′‐hydroxyl end(s)
  • 10 U/µl T4 polynucleotide kinase
  • 0.5 M EDTA, pH 8.0 (unit 3.3 )
  • 65° and 75°C water baths or heat blocks
  • Shielded radiation containers (unit 2.3 )
  • Additional reagents and equipment for removing unincorporated nucleotides ( protocol 4 ) and radiation safety and measurement, including quantifying specific activity of radiolabeled DNA (unit 2.3 )

Basic Protocol 2: Labeling DNA by Nick Translation

  Materials
  • dNTP with label (e.g., 10 µM [α‐32 P]dNTP; see Table 8.4.3 )
  • 0.5 mM 3dNTP mix (omitting the labeled dNTP; see Table 8.4.4 )
  • 10× E. coli DNA polymerase I buffer (see recipe )
  • Deoxyribonuclease I (DNase I), diluted ∼10,000‐fold from 1 mg/ml stock in enzyme diluent (see recipe )
  • 5 to 15 U/µl E. coli DNA polymerase I
  • DNA to be labeled
  • 0.5 M EDTA, pH 8.0 (unit 3.3 )
  • TE buffer, pH 8.0 (unit 3.3 )
  • 15°C water bath
  • Shielded radiation containers (unit 2.3 )
  • Additional reagents and equipment for removing unincorporated nucleotides ( protocol 4 ), radiation safety and measurement, including quantifying specific activity of radiolabeled DNA (unit 2.3 ), nucleic acid blotting (unit 8.2 ), agarose gel electrophoresis (unit 7.2 ), and digital image analysis (unit 7.5 )
    Table 8.4.4   Materials3dNTP Nucleotide Mixes for Nick Translation and Random Primed Synthesis

    Modified nucleotide with label Contents of 3dNTP mix (0.5 mM each)
    dATP (e.g., biotin‐11‐dATP, [α‐32 P]dATP) dCTP, dGTP, dTTP
    dCTP dATP, dGTP, dTTP
    dGTP dATP, dCTP, dTTP
    dTTP (dUTP) dATP, dCTP, dGTP

     

Basic Protocol 3: Labeling DNA by Random Primed Synthesis

  Materials
  • dNTP with label (e.g., 10 µM [α‐32 P]dNTP; see Table 8.4.3 )
  • 0.5 mM 3dNTP mix (omitting the labeled dNTP; see Table 8.4.4 )
  • 10× E. coli DNA polymerase I buffer
  • 3 to 8 U/µl E. coli DNA polymerase I large fragment (Klenow fragment)
  • DNA to be labeled
  • Random hexanucleotide primers (Sigma cat no. H‐0268)
  • 0.5 M EDTA, pH 8.0 (unit 3.3 )
  • TE buffer, pH 8.0 (unit 3.3 )
  • Boiling water bath
  • Additional reagents and equipment for removing unincorporated nucleotides ( protocol 4 ), radiation safety and measurement, including quantifying specific activity of radiolabeled DNA (unit 2.3 ), nucleic acid blotting (unit 8.2 ), agarose gel electrophoresis (unit 7.2 ), and digital image analysis (unit 7.5 )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 8.4.1 Representative fluorophores that can be used to label nucleic acids. (A ) Cy5: maximum absorbance, 649 nm, maximum emission, 670 nm; (B ) fluorescein: maximum absorbance, 494 nm, maximum emission, 518 nm.
    View Image
  •   Figure 8.4.2 Biotin and digoxigenin.
    View Image
  •   Figure 8.4.3 T4 polynucleotide kinase catalyzes the transfer of the γ phosphate from ATP to the 5′ hydroxyl of the DNA substrate.
    View Image
  •   Figure 8.4.4 Structure of [γ‐32 P]ATP.
    View Image
  •   Figure 8.4.5 The nature of the ends of DNA affect the efficiency of labeling by T4 polynucleotide kinase.
    View Image
  •   Figure 8.4.6 The nicking activity of deoxyribonuclease I (DNase I).
    View Image
  •   Figure 8.4.7 The 5′→3′ exonuclease activity of E. coli DNA polymerase I.
    View Image
  •   Figure 8.4.8 The 5′→3′ polymerase activity of E. coli DNA polymerase I.
    View Image
  •   Figure 8.4.9 DNA labeling by nick translation.
    View Image
  •   Figure 8.4.10 Structure of [α‐32 P]deoxynucleotide used for radiolabeling DNA in nick translation or random primed synthesis.
    View Image
  •   Figure 8.4.11 Biotin‐11‐dUTP: an example of a modified nucleotide than can be incorporated by E. coli DNA polymerase I.
    View Image
  •   Figure 8.4.12 DNA labeling by random primed synthesis.
    View Image

Videos

Literature Cited

Literature Cited
   Amitsur, M., Levitz, R., and Kaufmann, G. 1987. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6:2499‐2503.
   Ausubel, F., Brent, R., Kingston, R., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.) 2007. Current Protocols in Molecular Biology, Chapter 14. John Wiley & Sons, Hoboken, N.J.
   Baldwin, A.S. Jr., Oettinger, M., and Struhl, K. 1996. Curr. Protoc. Mol. Biol. 36:12.3.1‐12.3.7.
   Boyle, A. and Perry‐O'Keefe, H. 1992. Labeling and colorimetric detection of nonisotopic probes. Curr. Protoc. Mol. Biol. 20:3.18.1‐3.18.9.
   Brenowitz, M., Senear, D.F., and Kingston, R.E. 1989. DNase I footprint analysis of protein‐DNA binding. Curr. Protoc. Mol. Biol. 7:12.4.1‐12.4.16.
   Buratowski, S. and Chodosh, L.A. 1996. Mobility shift DNA‐binding assay using gel electrophoresis. Curr. Protoc. Mol. Biol. 36:12.2.1‐12.2.11.
   Cameron, V. and Uhlenbeck, O.C. 1977. 3′‐Phosphatase activity in T4 polynucleotide kinase. Biochemistry 16:5120‐5126.
   Duby, A., Jacobs, K.A., and Celeste, A. 1993. Using synthetic oligonucleotides as probes. Curr. Protoc. Mol. Biol. 2:6.4.1‐6.4.10.
   Ellington, A. and Pollard, J.D. Jr. 1998. Synthesis and purification of oligonucleotides. Curr. Protoc. Mol. Biol. 42:2.11.1‐2.11.25.
   Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6‐13.
   Gilman, M. 1993. Ribonuclease protection assay. Curr. Protoc. Mol. Biol. 24:4.7.1‐4.7.8.
   Greene, J.M. and Struhl, K. 1988. S1 analysis of messenger RNA using single‐stranded DNA probes. Curr. Protoc. Mol. Biol. 1:4.6.1‐4.6.13.
   Jarvest, R.L. and Lowe, G. 1981. The stereochemical course of phosphoryl transfer catalysed by polynucleotide kinase (bacteriophage‐T4‐infected Escherichia coli B). Biochem. J. 199:273‐276.
   Jilani, A., Ramotar, D., Slack, C., Ong, C., Yang, X.M., Scherer, S.W., and Lasko, D.D. 1999. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′‐phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem. 274:24176‐24186.
   Karimi‐Busheri, F., Daly, G., Robins, P., Canas, B., Pappin, D.J., Sgouros, J., Miller, G.G., Fakhrai, H., Davis, E.M., Le Beau, M.M., and Weinfeld, M. 1999. Molecular characterization of a human DNA kinase. J. Biol. Chem. 274:24187‐24194.
   Novogrodsky, A. and Hurwitz, J. 1966. The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. I. Phosphorylation at 5′‐hydroxyl termini. J. Biol. Chem. 241:2923‐2932.
   Novogrodsky, A., Tal, M., Traub, A., and Hurwitz, J. 1966. The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. II. Further properties of the 5′‐hydroxyl polynucleotide kinase. J. Biol. Chem. 241:2933‐2943.
   Richardson, C.C. 1965. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage‐infected Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 54:158‐165.
   Richardson, C.C. 1981. Bacteriophage T4 polynucleotide kinase. In The Enzymes (P.D. Boyer, ed.) pp. 299‐314. Academic Press, San Diego.
   Rigby, P.W., Dieckmann, M., Rhodes, C., and Berg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237‐251.
   Sambrook, J., Fritsch, E.G., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
   Sirotkin, K., Cooley, W., Runnels, J., and Snyder, L.R. 1978. A role in true‐late gene expression for the T4 bacteriophage 5′ polynucleotide kinase 3′ phosphatase. J. Mol. Biol. 123:221‐233.
   Strauss, W.M. 1993. Using DNA fragments as probes. Curr. Protoc. Mol. Biol. 24:6.3.1‐6.3.6.
   Struhl, K. 1993. Reagents and radioisotopes used to manipulate nucleic acids. Curr. Protoc. Mol. Biol. 9:3.4.1‐3.4.11.
   Tabor, S. 1987a. Phosphatases and kinases. Curr. Protoc. Mol. Biol.. 0:3.10.1‐3.10.5.
   Tabor, S. 1987b. Template‐independent DNA polymerases. Curr. Protoc. Mol. Biol. 0:3.6.1‐3.6.2.
   Tabor, S. 1987c. DNA‐dependent RNA polymerases. Curr. Protoc. Mol. Biol. 0:3.8.1‐3.8.4.
   Tabor, S. 1987d. DNA‐independent RNA polymerases. Curr. Protoc. Mol. Biol. 0:3.9.1‐3.9.2.
   Tabor, S., Struhl, K., Scharf, S.J., and Gelfand, D.H. 1997. DNA‐dependent DNA polymerases. Curr. Protoc. Mol. Biol. 37:3.5.1‐3.5.15.
   Triezenberg, S.J. 1992. Primer extension. Curr. Protoc. Mol. Biol. 20:4.8.1‐4.8.5.
   Vitolo, J.M., Thieret, C., and Hayes, J.J. 1999. DNase I and hydroxyl radical characterization of chromatin complexes. Curr. Protoc. Mol. Biol. 48:21.4.1‐21.4.9.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序