Labeling DNA and Preparing Probes
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
Labeling nucleic acids with radioisotopes, fluorophores, biotin, or digoxigenin enables their detection and analysis. When designing a labeling strategy, consider the intended application, the source of nucleic acid, and the type of label to incorporate. DNA oligonucleotides can be 5? end?labeled with radioisotopes in a reaction catalyzed by T4 polynucleotide kinase, or nonisotopic labels can be incorporated into oligonucleotides during DNA synthesis. Larger DNA substrates can be labeled by 5? end labeling (radioisotopes) or labeled uniformly along the length of the DNA by nick translation or random primed synthesis (using radioisotope or nonisotopic labels). The labeled DNA can be used for a variety of applications, including probing Southern blots, probing northern blots, in situ hybridization, quantifying real?time PCR results, and gel shift assays.
Keywords: nucleic acid probe; end?labeling; random primed synthesis; nick translation; radioisotope; fluorophore; biotin; digoxigenin; polynucleotide kinase; terminal transferase
Table of Contents
- Introduction
- Strategic Planning
- Safety Considerations
- Protocols
- Basic Protocol 1: 5′ End‐Labeling of DNA with T4 Polynucleotide Kinase
- Basic Protocol 2: Labeling DNA by Nick Translation
- Basic Protocol 3: Labeling DNA by Random Primed Synthesis
- Support Protocol 1: Purification of Labeled Probes Using Gel‐Filtration Spin Columns
- Reagents and Solutions
- Understanding Results
- Troubleshooting
- Variations
- Literature Cited
- Figures
- Tables
Materials
Basic Protocol 1: 5′ End‐Labeling of DNA with T4 Polynucleotide Kinase
Materials
Basic Protocol 2: Labeling DNA by Nick Translation
Materials
Basic Protocol 3: Labeling DNA by Random Primed Synthesis
Materials
|
Figures
-
Figure 8.4.1 Representative fluorophores that can be used to label nucleic acids. (A ) Cy5: maximum absorbance, 649 nm, maximum emission, 670 nm; (B ) fluorescein: maximum absorbance, 494 nm, maximum emission, 518 nm. View Image -
Figure 8.4.2 Biotin and digoxigenin. View Image -
Figure 8.4.3 T4 polynucleotide kinase catalyzes the transfer of the γ phosphate from ATP to the 5′ hydroxyl of the DNA substrate. View Image -
Figure 8.4.4 Structure of [γ‐32 P]ATP. View Image -
Figure 8.4.5 The nature of the ends of DNA affect the efficiency of labeling by T4 polynucleotide kinase. View Image -
Figure 8.4.6 The nicking activity of deoxyribonuclease I (DNase I). View Image -
Figure 8.4.7 The 5′→3′ exonuclease activity of E. coli DNA polymerase I. View Image -
Figure 8.4.8 The 5′→3′ polymerase activity of E. coli DNA polymerase I. View Image -
Figure 8.4.9 DNA labeling by nick translation. View Image -
Figure 8.4.10 Structure of [α‐32 P]deoxynucleotide used for radiolabeling DNA in nick translation or random primed synthesis. View Image -
Figure 8.4.11 Biotin‐11‐dUTP: an example of a modified nucleotide than can be incorporated by E. coli DNA polymerase I. View Image -
Figure 8.4.12 DNA labeling by random primed synthesis. View Image
Videos
Literature Cited
Literature Cited | |
Amitsur, M., Levitz, R., and Kaufmann, G. 1987. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6:2499‐2503. | |
Ausubel, F., Brent, R., Kingston, R., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.) 2007. Current Protocols in Molecular Biology, Chapter 14. John Wiley & Sons, Hoboken, N.J. | |
Baldwin, A.S. Jr., Oettinger, M., and Struhl, K. 1996. Curr. Protoc. Mol. Biol. 36:12.3.1‐12.3.7. | |
Boyle, A. and Perry‐O'Keefe, H. 1992. Labeling and colorimetric detection of nonisotopic probes. Curr. Protoc. Mol. Biol. 20:3.18.1‐3.18.9. | |
Brenowitz, M., Senear, D.F., and Kingston, R.E. 1989. DNase I footprint analysis of protein‐DNA binding. Curr. Protoc. Mol. Biol. 7:12.4.1‐12.4.16. | |
Buratowski, S. and Chodosh, L.A. 1996. Mobility shift DNA‐binding assay using gel electrophoresis. Curr. Protoc. Mol. Biol. 36:12.2.1‐12.2.11. | |
Cameron, V. and Uhlenbeck, O.C. 1977. 3′‐Phosphatase activity in T4 polynucleotide kinase. Biochemistry 16:5120‐5126. | |
Duby, A., Jacobs, K.A., and Celeste, A. 1993. Using synthetic oligonucleotides as probes. Curr. Protoc. Mol. Biol. 2:6.4.1‐6.4.10. | |
Ellington, A. and Pollard, J.D. Jr. 1998. Synthesis and purification of oligonucleotides. Curr. Protoc. Mol. Biol. 42:2.11.1‐2.11.25. | |
Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6‐13. | |
Gilman, M. 1993. Ribonuclease protection assay. Curr. Protoc. Mol. Biol. 24:4.7.1‐4.7.8. | |
Greene, J.M. and Struhl, K. 1988. S1 analysis of messenger RNA using single‐stranded DNA probes. Curr. Protoc. Mol. Biol. 1:4.6.1‐4.6.13. | |
Jarvest, R.L. and Lowe, G. 1981. The stereochemical course of phosphoryl transfer catalysed by polynucleotide kinase (bacteriophage‐T4‐infected Escherichia coli B). Biochem. J. 199:273‐276. | |
Jilani, A., Ramotar, D., Slack, C., Ong, C., Yang, X.M., Scherer, S.W., and Lasko, D.D. 1999. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′‐phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem. 274:24176‐24186. | |
Karimi‐Busheri, F., Daly, G., Robins, P., Canas, B., Pappin, D.J., Sgouros, J., Miller, G.G., Fakhrai, H., Davis, E.M., Le Beau, M.M., and Weinfeld, M. 1999. Molecular characterization of a human DNA kinase. J. Biol. Chem. 274:24187‐24194. | |
Novogrodsky, A. and Hurwitz, J. 1966. The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. I. Phosphorylation at 5′‐hydroxyl termini. J. Biol. Chem. 241:2923‐2932. | |
Novogrodsky, A., Tal, M., Traub, A., and Hurwitz, J. 1966. The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. II. Further properties of the 5′‐hydroxyl polynucleotide kinase. J. Biol. Chem. 241:2933‐2943. | |
Richardson, C.C. 1965. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage‐infected Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 54:158‐165. | |
Richardson, C.C. 1981. Bacteriophage T4 polynucleotide kinase. In The Enzymes (P.D. Boyer, ed.) pp. 299‐314. Academic Press, San Diego. | |
Rigby, P.W., Dieckmann, M., Rhodes, C., and Berg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237‐251. | |
Sambrook, J., Fritsch, E.G., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. | |
Sirotkin, K., Cooley, W., Runnels, J., and Snyder, L.R. 1978. A role in true‐late gene expression for the T4 bacteriophage 5′ polynucleotide kinase 3′ phosphatase. J. Mol. Biol. 123:221‐233. | |
Strauss, W.M. 1993. Using DNA fragments as probes. Curr. Protoc. Mol. Biol. 24:6.3.1‐6.3.6. | |
Struhl, K. 1993. Reagents and radioisotopes used to manipulate nucleic acids. Curr. Protoc. Mol. Biol. 9:3.4.1‐3.4.11. | |
Tabor, S. 1987a. Phosphatases and kinases. Curr. Protoc. Mol. Biol.. 0:3.10.1‐3.10.5. | |
Tabor, S. 1987b. Template‐independent DNA polymerases. Curr. Protoc. Mol. Biol. 0:3.6.1‐3.6.2. | |
Tabor, S. 1987c. DNA‐dependent RNA polymerases. Curr. Protoc. Mol. Biol. 0:3.8.1‐3.8.4. | |
Tabor, S. 1987d. DNA‐independent RNA polymerases. Curr. Protoc. Mol. Biol. 0:3.9.1‐3.9.2. | |
Tabor, S., Struhl, K., Scharf, S.J., and Gelfand, D.H. 1997. DNA‐dependent DNA polymerases. Curr. Protoc. Mol. Biol. 37:3.5.1‐3.5.15. | |
Triezenberg, S.J. 1992. Primer extension. Curr. Protoc. Mol. Biol. 20:4.8.1‐4.8.5. | |
Vitolo, J.M., Thieret, C., and Hayes, J.J. 1999. DNase I and hydroxyl radical characterization of chromatin complexes. Curr. Protoc. Mol. Biol. 48:21.4.1‐21.4.9. |