丁香实验_LOGO
登录
热门搜索
中国健康教育rabbit polyclonal antibody rat igg (hgoat anti-human igg (h氧化还酶活的测定goat anti-mouse igg (hgoat anti-rabbit igg hgoat anti-rabbit igg (hkatchem硼化学(cas熔解曲线探针法肿瘤
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Animal Models of Visceral Pain

互联网

571
The study of visceral pain is of high clinical relevance and the findings more directly translational in the search for analgesic agents. Early studies of nerve recordings after acute visceral nerve activation with (1) mechanical distension of hollow organs such as the colon or esophagus, (2) chemical irritation, and/or (3) inflammation have provided relevant information about normal, typically silent visceral afferents and evoked behavioral responses. Clinically relevant information about visceral pain has been reported in studies utilizing intact animal models of inflammatory, diabetic, neuropathic, cancer, chemotherapy-induced and other injury-related visceral pain conditions. More recently, animal models designed to study mechanisms signaling the transitional stages from acute to chronic visceral pain are providing information relevant to the development of drug therapies for reducing visceral pain in patients with these conditions. As an example, a visceral pain model of chronic pancreatitis is induced with an alcohol and high-fat diet in rat that persists for 2 months. Increased sensitization, inflammation, and pancreatic tissue disruption typical in the model are reversed by overexpression of met-enkephalin by a herpes simplex viral (HSV) preproenkephalin vector. The therapeutic effects are most likely attributable to opioid receptors located both in the central and peripheral nervous systems, as well as on peripheral cells. Advantages of using (HSV) vectors for therapeutic gene delivery rather than other viral delivery vectors (lentivirus, adenovirus) in certain clinical settings to treat visceral pain are discussed.
ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序