丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Nucleic Acid Programmable Protein Arrays: Versatile Tools for Array‐Based Functional Protein Studies

互联网

7981
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Videos
  • Literature Cited

Abstract

 

Protein microarrays offer a global perspective on the function of expressed gene products. However, technical issues related to the stability and dynamic range of microarrays printed with purified protein have hampered their widespread adoption. Taking an alternate approach, the Nucleic Acid Programmable Protein Array (NAPPA) is constructed by spotting protein?encoding plasmid DNA at high density, in addressable fashion, on an array surface. Proteins are subsequently generated in situ just prior to experimentation using cell?free expression systems. As such, the NAPPA platform offers a unique and viable alternative that circumvents many of the inherent limitations of spotted protein arrays, enabling diverse functional protein studies including protein?small molecule, protein?protein, antigen?antibody, and protein?nucleic acid interactions. It further offers a versatile and adaptable platform amenable to a variety of capture modalities and expression systems, and, most importantly, construction of the array is accessible to any lab with an array printer and laser slide scanner. This unit is intended to provide a reference for investigators wishing to generate arrays based on this platform, and details (1) the basic construction of cDNA?based protein microarrays from DNA isolation to printing and development, (2) quality?control efforts taken to ensure the usefulness and integrity of microarray data, and (3) a particular example of the application of self?assembling protein arrays to screen for blood?borne antibody biomarkers. Curr. Protoc. Protein Sci. 64:27.2.1?27.2.26. © 2011 by John Wiley & Sons, Inc.

Keywords: protein microarray; antibodies; serum profiling

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Generation, Isolation and Quantitation of Plasmid DNA for Printing
  • Basic Protocol 2: DNA Precipitation and Preparation of Print Mix for Arraying
  • Basic Protocol 3: On‐Slide Expression, Serum Challenge, and Development
  • Alternate Protocol 1: Direct Labeling
  • Alternate Protocol 2: Amplified Labeling
  • Basic Protocol 4: Image Scanning and Data Collection
  • Support Protocol 1: Slide Coating for Nucleic Acid Programmable Protein Arrays
  • Support Protocol 2: Quantification of DNA Printed on NAPPA Slides
  • Support Protocol 3: Detection of Displayed Protein on NAPPA Slides with Anti‐GST Antibody
  • Support Protocol 4: Pretitration for Signal Stabilization
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Generation, Isolation and Quantitation of Plasmid DNA for Printing

  Materials
  • LB agar in Omni plates (see recipe ) with appropriate selection antibiotic
  • Recombinant bacterial library transformed with plasmid‐encoded proteins fused to affinity tag (T7 promoter‐based) (e.g., from the Center for Personalized Diagnostics of the Biodesign Institute at Arizona State University; 96‐well plates of bacterial glycerol stock)
  • LB liquid medium (LB broth; BD Difco, cat. no. 95026‐856) or Terrific broth (see recipe ), with appropriate selection antibiotic
  • Solution 1: resuspension buffer (see recipe )
  • Solution 2: lysis buffer (see recipe )
  • Solution 3: neutralization buffer (see recipe )
  • NucleoBond anionic resin (Machery Nagel, cat. no. 740503.1, http://www.mn‐net.com/)
  • Solution N2: equilibration buffer (see recipe )
  • Solution N3: wash buffer (see recipe )
  • Solution N5: elution buffer (see recipe )
  • 10× TE buffer: 100 mM Tris⋅Cl, pH 7.5 ( appendix 2E )/10 mM EDTA
  • bisBenzimide H (Hoechst dye; Sigma)
  • Plasmid DNA to prepare DNA standards
  • 96‐pin replicator device (Boekel, cat. no. 140500, http://www.boekelsci.com/)
  • 96‐well deep‐well blocks (Riplates), 2 ml/well, for bacterial cultivation (RK Manufacturing, cat. no. RRK‐850356B, http://www.rkmfg.com/)
  • Gas permeable plate seals (Axygen, cat. no. BF‐400, http://www.axygen.com)
  • ATR Multitron shaker (ATRBiotech, http://www.atrbiotech.com/)
  • Centrifuge with capacity to provide slow ramp of acceleration and to handle 96‐well deep‐well plates
  • Multichannel pipettors or automated multiwell dispenser (e.g., Wellmate, Thermo Scientific)
  • Aluminum plate seal (Axygen, cat. no. PCR‐AS‐200, http://www.axygen.com/)
  • Unifilter 96‐well microplate filter device, 800 µl/well (Whatman, cat. no. 7700‐2804)
  • Vacuum manifold fitted for microwell plate with liquid waste trap (Pall, cat. no. 5017)
  • 96‐well storage (collection) plate, 800 µl/well (ThermoScientific, cat. no. AB0859)
  • Black fluorescent microwell plates (ISC BioExpress, cat. no. T3025‐16, http://www.bioexpress.com/)
  • Fluorescent microwell plate reader equipped with 365/405 nm excitation/emission (Spectramax M5 microplate reader; Molecular Devices)
NOTE: Video 1 illustrates protocol 1 and steps 1 to 4 of protocol 2 (see Video 1 at http://www.currentprotocols.com/protocol/ps2702).

Basic Protocol 2: DNA Precipitation and Preparation of Print Mix for Arraying

  Materials
  • 96‐well plate containing DNA samples ( protocol 1 )
  • 3 M potassium acetate, pH 3.5 (e.g., Sigma)
  • Isopropanol (e.g., Sigma)
  • 80% (v/v) ethanol (prepare from 200 proof ethanol, e.g., Sigma)
  • 66 mg/ml bovine serum albumin (BSA; e.g., Sigma)
  • 50 mg/ml bis‐sulfosuccinimdylsuberate (BS3 ;Pierce, cat. no. PI 21580) in dimethylsulfoxide (DMSO)
  • 5 mg/ml polyclonal anti‐GST capture antibody (Amersham, cat. no. 27‐4577‐01)
  • Aluminum foil plate seal (Axygen, cat. no. PCR‐AS‐200, http://www.axygen.com)
  • Centrifuge with capacity to handle 96‐well deep‐well plates
  • Genetix Q Array 2 robotic microarray printing unit with 300‐µm tungsten contact pins (http://www.genetix.com/)
  • Coated slides ( protocol 7 )
  • Genetix 7020 384‐well plates (http://www.genetix.com/)
  • Multichannel pipettors or automated multiwell dispenser (e.g., Wellmate, Thermo Scientific)
  • Eppendorf Thermomixer plate shaker (Fisher Scientific)
NOTE: Video 1 illustrates protocol 1 and steps 1 to 4 of this protocol. Video 2 illustrates steps 5 to 22 of protocol 2 . See Videos 1 and 2 at http://www.currentprotocols.com/protocol/ps2702.

Basic Protocol 3: On‐Slide Expression, Serum Challenge, and Development

  Materials
  • Printed slides ( protocol 2 )
  • SuperBlock blocking buffer (ThermoScientific, cat. no. 37535)
  • TnT Reticulocyte Lysate In vitro Transcription and Translation system (Promega, cat. no. L4610) including:
    • Amino acid mixture minus Leu
    • Amino acid mixture minus Cys
    • Amino acid mixture minus Met
    • TnT buffer
    • T7 RNA polymerase
    • TnT rabbit reticulocyte lysate
  • DEPC‐treated (nuclease‐free) H 2 O (Promega, cat. no. P1193)
  • 5% skim milk in PBST, pH 7.4 (see recipe )
  • Serum to be assayed for antibodies to antigens on the arrays (optional)
  • Hybriwell gaskets with adhesive inlet covers (Grace Bio‐Labs, 44904)
  • Echotherm Chilling Incubator (Sigma‐Aldrich, cat. no. Z400963)
  • Incubation dishes (rectangular 4‐well dishes, Nalgene Nunc, cat. no. 267061)
  • Rocking platform shaker (e.g., VWR. cat. no. 40000‐304)
  • Hybridization chamber (Corning, product no. 2551)
  • Rotating slide rotisserie (Labquake 415110, Thermolyne)
  • Additional reagents and equipment for direct labeling ( protocol 4 ) or amplified labeling ( protocol 5 )
NOTE: Video 3 illustrates steps 1 to 11 of this protocol (see Video 3 at http://www.currentprotocols.com/protocol/ps2702).

Alternate Protocol 1: Direct Labeling

  • Washed slide containing newly expressed proteins (step 14 of protocol 3 )
  • Secondary antibody (dilute 1:500): Cy3‐labeled anti‐mouse (Jackson ImmunoResearch, cat. no. 115‐165‐071) or Cy3‐labeled anti‐human (Jackson ImmunoResearch, cat. no. 109‐165‐008)
  • PBST, pH 7.4 (see recipe )
  • Hybridization chamber (Corning, product no. 2551)
NOTE: Procedures in this protocol are illustrated in Video 3 (see Video 3 at http://www.currentprotocols.com/protocol/ps2702).

Alternate Protocol 2: Amplified Labeling

  • Washed slide containing newly expressed protein (step 14 of protocol 3 )
  • Secondary antibody (dilute 1:500): HRP‐conjugated anti‐mouse antibody (Jackson ImmunoResearch, cat. no. 115‐035‐071) or HRP‐conjugated anti‐human antibody (Jackson ImmunoResearch, cat. no. 109‐035‐098)
  • TSA reagent and diluent (PerkinElmer, cat. no. SAT704B)
  • Hybridization chamber (Corning, cat. no. 2551)
  • Slide dishes
  • Kimwipes, Delicate Task Wipers
  • Lifter slips, 24× 65 mm (ThermoScientific, cat. no. 25X65I‐2‐5251)
NOTE: Procedures in this protocol are illustrated in Video 3 (see Video 3 at http://www.currentprotocols.com/protocol/ps2702).

Basic Protocol 4: Image Scanning and Data Collection

  Materials
  • 3‐aminopropyltriethoxysilane (ThermoScientific)
  • Acetone (e.g., Sigma)
  • Silica desiccant packets
  • 1 × 2–in. glass slides
  • Metal slide rack
  • Glass coating chambers with lid (of sufficient size to hold a metal rack containing slides)
  • Rocking platform (e.g., VWR, cat. no. 40000‐304)
NOTE: Procedures in this protocol are illustrated in Video 4 (see Video 4 at http://www.currentprotocols.com/protocol/ps2702).

Support Protocol 1: Slide Coating for Nucleic Acid Programmable Protein Arrays

  Materials
  • Slide containing DNA array ( protocol 2 )
  • SuperBlock blocking buffer (ThermoScientific, cat. no. 37535)
  • Quanti‐iT Pico Green (Invitrogen)
  • TE buffer, pH 7.5 ( appendix 2E )
  • PBST, pH 7.4 (see recipe )
  • DMSO, Sigma, St. Louis, MO
  • Rocking platform (VWR, cat. no. 40000‐304)
  • Kimwipes, Delicate Task Wipers
  • Incubation dishes (rectangular 4‐well dishes; Nalgene Nunc, cat. no. 267061)
  • Lifter slips, 24× 65 mm (ThermoScientific, cat. no. 25X65I‐2‐5251)
  • Scanner (Tecan Power Scanner, http://www.tecan.com; or equivalent scanner for standard glass slides)
  • Additional reagents and equipment for scanning slides ( protocol 6 )
NOTE: Procedures in this protocol are illustrated in Video 5 (see Video 5 at http://www.currentprotocols.com/protocol/ps2702).

Support Protocol 2: Quantification of DNA Printed on NAPPA Slides

  Materials
  • Array slide bearing newly expressed proteins (step 14 of protocol 3 )
  • Primary antibody: mouse anti‐GST (dilute 1:500)
  • 5% skim milk in PBST, pH 7.4 (see recipe )
  • Anti‐affinity tag antibodies for development and determination of protein display, 2624B (Cell Signaling Technology)
  • Hybridization chamber (Corning, product no. 2551)
  • Incubation dishes (rectangular 4‐well dishes; Nalgene Nunc, cat no. 267061)
  • Rotating slide rotisserie (Labquake 415110, Thermolyne)
  • Additional reagents and equipment for detection ( protocol 4 or protocol 52 )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 27.2.1 Schematic illustrating array features printed with plasmid DNA in the presence of capture antibodies and conversion of cDNA to protein by in vitro transcription and translation. Capture antibodies tether and immobilize proteins by binding to the protein‐fused affinity tag.
    View Image
  •   Figure 27.2.2 A representative high‐density slide printed with plasmid DNA converted to protein by treatment with a cell‐free expression system (left). Plot of the DNA signal obtained from Pico Green staining against the protein signal obtained by staining with anti‐GST antibodies illustrates the relatively tight range of both DNA and protein captured on Nucleic Acid Programmable Protein Array (NAPPA). Figure originally published in (Ramachandran, ) and used here with permission.
    View Image
  •   Figure 27.2.3 A pro‐plate mini‐array used to titer serum to determine the best dilution for the full‐scale array. The outlined boxes indicate the dilution chose for each serum. The false color scheme is white saturated>red>orange>yellow>green>blue.
    View Image
  •   Figure 27.2.4 (A ) Scraped features that would give erroneously low signal. (B ) Regional biases in slide signal intensity most likely due to technical errors in development. (C ) A microscopic fiber on the array surface that spans a single feature would contribute positive error to signal intensity. (D ) Poor spot morphology of features on the left (versus good features on the right) that may arise from drying during serum challenge and development.
    View Image
  •   Figure 27.2.5 Plots of the median intensity for all features in a sub‐array or block (printed by a single pin) reveal differences in immunoreactive signal that persist over the majority of the serum‐challenged array (i.e., pin 20, pin 46, pin 35), suggesting pin‐dependent artifacts that may require correction.
    View Image
  •   Figure 27.2.6 Representative histogram of log2 ‐transformed signal intensity from a serum‐challenged NAPPA slide developed with anti‐human secondary antibodies and tyramide signal amplification.
    View Image
  •   Figure 27.2.7 Pseudo‐colored images (left) and scatter plots (right) for replicate arrays challenged with the same serum samples on separate days with computed correlation coefficient.
    View Image
  •   Figure 27.2.8 Replicate images of two Pico Green‐stained slides from a single print batch (left). Signal‐intensity data extracted from each and plotted against one another show high concordance between values and verify reproducible printing (right).
    View Image
  •   Figure 27.2.9 Replicate images of two anti‐GST stained slides from a single print batch developed by amplified labeling (left). Signal‐intensity data extracted from each and plotted against one another show high concordance between values and verify reproducible protein expression and display (right).
    View Image

Videos

  • DNA isolation and array sample preparation
    9:38
    Play Video
  • Preparation of Master Mix and the arrayer
    4:21
    Play Video
  • Slide expression, detection, and imaging
    6:57
    Play Video
  • Aminosilane slide coating
    2:32
    Play Video
  • Detection of array-immobilized DNA
    2:18
    Play Video

Literature Cited

Literature Cited
   Andersen‐Beckh, B. and Niemann, H., 1995. In vitro transcription and translation in a cell‐free system from Clostridium tetani. Methods Mol. Biol. 37:253‐263.
   Anderson, K.S., Ramachandran, N., Wong, J., Raphael, J.V., Hainsworth, E., Demirkan, G., Cramer, D., Aronzon, D., Hodi, F.S., Harris, L., Logvinenko, T., and LaBaer, J., 2008. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J. Proteome Res. 7:1490‐1499.
   Baekkeskov, S., Nielsen, J.H., Marner, B., Bilde, T., Ludvigsson, J., and Lernmark, A., 1982. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 298:167‐169.
   Ballard, J.L., Peeva, V.K., deSilva, C.J., Lynch, J.L., and Swanson, N.R., 2007. Comparison of Alexa Fluor and CyDye for practical DNA microarray use. Mol. Biotechnol. 36:175‐183.
   Blass, S., Engel, J.M., and Burmester, G.R., 1999. The immunologic homunculus in rheumatoid arthritis. Arthritis Rheum. 42:2499‐2506.
   Branham, W.S., Melvin, C.D., Han, T., Desai, V.G., Moland, C.L., Scully, A.T., and Fuscoe, J.C. 2007. Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnol. 7:8‐16.
   Christie, M.R., Hollands, J.A., Brown, T.J., Michelsen, B.K., and Delovitch, T.L. 1993. Detection of pancreatic islet 64,000 M(r) autoantigens in insulin‐dependent diabetes distinct from glutamate decarboxylase. J Clin. Invest. 92:240‐248.
   Cordes, V.C. and Krohne, G., 1993. Sequential O‐glycosylation of nuclear pore complex protein gp62 in vitro. Eur. J. Cell Biol. 60:185‐195.
   Cretich, M., Damin, F., Pirri, G., and Chiari, M. 2006. Protein and peptide arrays: Recent trends and new directions. Biomol. Eng. 23:77‐88.
   Ernst, V., Levin, D.H., Foulkes, J.G., and London, I.M. 1982. Effects of skeletal muscle protein phosphatase inhibitor‐2 on protein synthesis and protein phosphorylation in rabbit reticulocyte lysates. Proc. Natl. Acad. Sci. U.S.A. 79:7092‐7096.
   Fare, T.L., Coffey, E.M., Dai, H., He, Y.D., Kessler, D.A., Kilian, K.A., Koch, J.E., LeProust, E., Marton, M.J., Meyer, M.R., Stoughton, R.B., Tokiwa, G.Y., and Wang, Y. 2003. Effects of atmospheric ozone on microarray data quality. Anal. Chem. 75:4672‐4675.
   Finkelstein, D., Janis, M., Williams, A., Steiger, K., and Retief, J. 2006. DNA microarrays and related genomic techniques. In Design, Analysis and Interpretation of Experiments (D. Allison, G. Page, T. Beasley, and J. Edwards, eds.) pp. 29‐55. Taylor and Francis Group, Durham, N.C.
   Gu, Q., Sivanandam, T.M., and Kim, C.A. 2006. Signal stability of Cy3 and Cy5 on antibody microarrays. Proteome Sci. 4:21.
   Hueber, W., Kidd, B.A., Tomooka, B.H., Lee, B.J., Bruce, B., Fries, J.F., Sonderstrup, G., Monach, P., Drijfhout, J.W., van Venrooij, W.J., Utz, P.J., Genovese, M.C., and Robinson, W.H. 2005. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum. 52:2645‐2655.
   Jagus, R., Joshi, B., Miyamoto, S., and Beckler, G.S. 1998. In vitro translation. Curr. Protoc. Cell Biol. 00:11.2.1‐11.2.25
   Klammt, C., Schwarz, D., Dotsch, V., and Bernhard, F. 2007. Cell‐free production of integral membrane proteins on a preparative scale. Methods Mol. Biol. 375:57‐78.
   Li, Q.Z., Zhou, J., Wandstrat, A.E., Carr‐Johnson, F., Branch, V., Karp, D.R., Mohan, C., Wakeland, E.K., and Olsen, N.J. 2007. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin. Exp. Immunol. 147:60‐70.
   Litowski, J.R. and Hodges, R.S. 2002. Designing heterodimeric two‐stranded alpha‐helical coiled‐coils: Effects of hydrophobicity and alpha‐helical propensity on protein folding, stability, and specificity. J. Biol. Chem. 277:37272‐37279.
   Los, G.V. and Wood, K., 2007. The HaloTag: A novel technology for cell imaging and protein analysis. Methods Mol. Biol. 356:195‐208.
   Ludwig, N., Keller, A., Comtesse, N., Rheinheimer, S., Pallasch, C., Fischer, U., Fassbender, K., Steudel, W.I., Lenhof, H.P., and Meese, E. 2008. Pattern of serum autoantibodies allows accurate distinction between a tumor and pathologies of the same organ. Clin. Cancer Res. 14:4767‐4774.
   Madoz‐Gurpide, J., Kuick, R., Wang, H., Misek, D.E., and Hanash, S.M. 2008. Integral protein microarrays for the identification of lung cancer antigens in sera that induce a humoral immune response. Mol. Cell Proteomics 7:268‐281.
   Marina, O., Biernacki, M.A., Brusic, V., and Wu, C.J. 2008. A concentration‐dependent analysis method for high density protein microarrays. J. Proteome Res. 7:2059‐2068.
   Montor, W.R., Huang, J., Hu, Y., Hainsworth, E., Lynch, S., Kronish, J.W., Ordonez, C.L., Logvinenko, T., Lory, S., and LaBaer, J. 2009. Genome‐wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self‐assembling protein microarrays. Infect. Immun. 77:4877‐4886.
   Murphy, P.J., Kanelakis, K.C., Galigniana, M.D., Morishima, Y., and Pratt, W.B. 2001. Stoichiometry, abundance, and functional significance of the hsp90/hsp70‐based multiprotein chaperone machinery in reticulocyte lysate. J. Biol. Chem. 276:30092‐30098.
   Ramachandran, N., Hainsworth, E., Bhullar, B., Eisenstein, S., Rosen, B., Lau, A.Y., Walter, J.C., and LaBaer, J. 2004. Self‐assembling protein microarrays. Science 305:86‐90.
   Ramachandran, N., Raphael, J.V., Hainsworth, E., Demirkan, G., Fuentes, M.G., Rolfs, A., Hu, Y., and LaBaer, J. 2008. Next‐generation high‐density self‐assembling functional protein arrays. Nat. Methods 5:535‐538.
   Redpath, N.T. and Proud, C.G., 1989. The tumour promoter okadaic acid inhibits reticulocyte‐lysate protein synthesis by increasing the net phosphorylation of elongation factor 2. Biochem J. 262:69‐75.
   Reimers, M. and Weinstein, J.N. 2005. Quality assessment of microarrays: Visualization of spatial artifacts and quantitation of regional biases. BMC Bioinformatics 6:166‐174.
   Sakurai, H., Izumi, S., and Tomino, S. 1990. In vitro transcription of the plasma protein genes of Bombyx mori. Biochim. Biophys. Acta 1087:18‐24.
   Schumacher, R.J., Hurst, R., Sullivan, W.P., McMahon, N.J., Toft, D.O., and Matts, R.L. 1994. ATP‐dependent chaperoning activity of reticulocyte lysate. J. Biol. Chem. 269:9493‐9499.
   Simon, M., Girbal, E., Sebbag, M., Gomes‐Daudrix, V., Vincent, C., Salama, G., and Serre, G. 1993. The cytokeratin filament‐aggregating protein filaggrin is the target of the so‐called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J. Clin. Invest. 92:1387‐1393.
   Söderberg, A., Myhre, A.G., Ekwall, O., Gebre‐Medhin, G., Hedstrand, H., Landgren, E., Miettinen, A., Eskelin, P., Halonen, M., Tuomi, T., Gustafsson, J., Husebye, E.S., Perheentupa, J., Gylling, M., Manns, M.P., Rorsman, F., Kampe, O., and Nilsson, T. 2004. Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab. 89:557‐562.
   Somers, K., Govarts, C., Stinissen, P., and Somers, V. 2009. Multiplexing approaches for autoantibody profiling in multiple sclerosis. Autoimmun. Rev. 8:573‐579.
   Speel, E.J., Hopman, A.H., and Komminoth, P. 2006. Tyramide signal amplification for DNA and mRNA in situ hybridization. Methods Mol. Biol. 326:33‐60.
   Wenzlau, J.M., Juhl, K., Yu, L., Moua, O., Gottlieb, P., Rewers, M., Eisenbarth, G.S., Jensen, J., Davidson, H.W., and Hutton, J.C. 2007. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl. Acad. Sci. U.S.A. 104:17040‐17045.
   Wuu, J.J. and Swartz, J.R. 2008. High yield cell‐free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta 1778:1237‐1250.
   Zhang, W., Shmulevich, I., and Astola, J. 2004. Microarray Quality Control. Wiley‐Liss, Hoboken, N.J.
   Zhu, X., Gerstein, M., and Snyder, M. 2006. ProCAT: A data analysis approach for protein microarrays.Genome Biol. 7:R110.
   Zubay, G. 1973. In vitro synthesis of protein in microbial systems. Ann. Rev. Genet. 7:267‐287.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序