Random Mutagenesis by Error-Prone PCR
互联网
2187
In vitro selection coupled with directed evolution represents a powerful method for generating nucleic acids and proteins with desired functional properties. Creating high-quality libraries of random sequences is an important step in this process as it allows variants of individual molecules to be generated from a single-parent sequence. These libraries are then screened for individual molecules with interesting, and sometimes very rare, phenotypes. Here, we describe a general method to introduce random nucleotide mutations into a parent sequence that takes advantage of the polymerase chain reaction (PCR). This protocol reduces mutational bias often associated with error-prone PCR methods and allows the experimenter to control the degree of mutagenesis by controlling the number of gene-doubling events that occur in the PCR reaction. The error-prone PCR method described here was used to optimize a de novo evolved protein for improved folding stability, solubility, and ligand-binding affinity.