Lignin, comprised primarily of three randomly polymerized phenylpropenyl monomers, is, arguably, the second most common organic molecule on earth. In current biorefinery applications, lignin is burned, usually in concentrated pulping or hydrolysis liquor, as a source of process steam and both internal and exported electricity. The aromatic content of lignin makes it a potentially attractive feedstock for high-value aromatic chemicals, polymers, and carbon products (graphite, activated carbon, and carbon fiber). Revenue from production of lignin-based chemicals could play a major role in biorefinery profitability if cost-effective methods for lignin separation and purification can be developed. This chapter presents descriptions of methods for assessing and purifying biorefinery lignins so that they can be evaluated for use as feedstock for production of chemical products. Areas covered are: (1) initial evaluations of as-received lignin samples (visual, microscopic, separable organics); (2) analysis of common contaminants (bulk and filterable ash and particulate contaminants in liquid and dry lignin samples); (3) preparation of lignins for experimental use as chemical feedstock (prefiltration, filtration using bench-scale chemical apparatus and larger scale bag filters, one-step lignin precipitation, two-step carbohydrate and lignin precipitation, desalting of dry powdered or precipitated lignin, and lyophilization). These methods have been used successfully at the bench scale to produce the 1–50 kg amounts of wood and grass lignins typically required for bench-scale assessment as chemical feedstocks.