丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Clinical Chemistry and Other Laboratory Tests on Mouse Plasma or Serum

互联网

8761
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

Besides hematological analyses, many other parameters, including clinical chemistry and endocrinological values, can be determined from mouse blood samples. For most of these tests, plasma or serum samples are used. Data obtained by these investigations provide indications of genotype effects on metabolism and organ functions. Here we describe in detail the considerations that have to be taken into account to get adequate samples for plasma or serum analyses and the recommended sample processing for different investigations. Furthermore, we describe established methods used in the German Mouse Clinic (GMC) to determine clinical chemical parameters; for more in?depth analysis of specific classes of biomarkers, we provide instructions for ELISAs (sandwich and competitive) as well as LC?MS/MS, focusing on markers associated with bone or steroid metabolism in the mouse as working examples. Curr. Protoc. Mouse Biol. 3:69?100 © 2013 by John Wiley & Sons, Inc.

Keywords: mouse; clinical chemistry; steroids; osteocalcin; PINP; ELISA; mass spectrometry

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Serum Preparation from Mouse Blood
  • Basic Protocol 2: Plasma Preparation from Mouse Blood
  • Basic Protocol 3: Analysis of Clinical‐Chemical Parameters in Mouse Plasma Using the AU480 System
  • Basic Protocol 4: Measurement of Mouse Osteocalcin by a Commercially Available Sandwich ELISA (Direct Detection)
  • Basic Protocol 5: Measurement of Mouse/Rat PINP by a Commercial Available Competitive ELISA
  • Basic Protocol 6: Quantification of Steroids in Mouse Plasma Using Online SPE Coupled to LC‐MS/MS
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Serum Preparation from Mouse Blood

  Materials
  • Mice
  • Plain 1.5‐ml cone‐shaped sample tubes for sample collection (e.g., Eppendorf; alternatively, tubes containing clot activator, with or without separating gel, can be used)
  • Rack for sample tubes
  • Tabletop microcentrifuge (e.g., Biofuge fresco, Heraeus)
  • 1.5‐ml cone‐shaped sample tubes for separated serum (e.g., Eppendorf)
  • Additional reagents and equipment for blood collection from mice (Rathkolb et al., )

Basic Protocol 2: Plasma Preparation from Mouse Blood

  Materials
  • Mice
  • 0.5‐ to 1.0‐ml sample tubes for plasma preparation, containing an anticoagulant (e.g., Eppendorf; whether Li‐heparin‐coated, K‐EDTA‐coated, or citrated tubes are used depends on the analyses planned)
  • Rack for sample tubes
  • Tabletop microcentrifuge, preferentially coolable (e.g., Biofuge fresco)
  • 1.5‐ml cone‐shaped sample tubes for separated plasma
  • Additional reagents and equipment for blood collection from mice (Rathkolb et al., )

Basic Protocol 3: Analysis of Clinical‐Chemical Parameters in Mouse Plasma Using the AU480 System

  Materials
  • Mice
  • Deionized water supply providing sufficient amounts of deionized water to run the clinical chemistry analyzer [e.g., Medica water purification system, Elga LabWater (http://www.elgalabwater.com/), VWS‐Deutschland GmbH (http://www.veoliawaterst.de/)]
  • Reagents and solutions needed for operation of the AU480 autoanalyzer (Beckman Coulter):
    • Wash solution (cat. no. OSR0001)
    • Cleaning solution (cat. no. ODR3021)
    • ISE buffer (cat. no. OE66320)
    • ISE selectivity check (cat. no.OE66313)
    • ISE Reference (cat. no. OE66318)
    • ISE Mid Standard (cat. no. OE66319)
    • ISE internal reference solution (cat. no. OE66314)
    • Calibrators (see Tables 13.0.4300 to 13.0.4300 )
    • Quality control samples (see Tables 13.0.4300 to 13.0.4300 )
    • Test kits for the parameters to be analyzed (see Tables 13.0.4300 to 13.0.4300 )
  • Plain, Li‐heparin‐, or EDTA‐coated sample tubes (e.g., from Kabe Labortechnik, http://www.kabe‐labortechnik.de/: Li 500 A or Li 1000 A Standrand, EDTA 500 A or EDTA 1000 A Standrand) for blood collection
  • 1.5‐ml cone‐shaped sample tubes for separated plasma
  • AU480 autoanalyzer (Beckman‐Coulter)
  • Software for data evaluation (see below)
  • Additional reagents and equipment for blood collection from mice (Rathkolb et al., ) and preparation of plasma ( protocol 2 ) or serum ( protocol 1 )

Basic Protocol 4: Measurement of Mouse Osteocalcin by a Commercially Available Sandwich ELISA (Direct Detection)

  Materials
  • Osteocalcin sandwich ELISA kit (Biomedical Technologies, cat. no. BT‐470) including:
    • Sample buffer, one 60‐ml bottle
    • Wash buffer, phosphate‐saline concentrate, 5×, one 100 ml bottle: transfer contents to a graduated cylinder, bring volume up to 500 ml with deionized water, and mix
    • Mouse osteocalcin standard, one vial, 200 ng, lyophilized: reconstitute standard with exactly 2.0 ml of sample buffer (yields a 100 ng/ml solution); use for making working standards; store reconstituted standard at −20°C
    • Mouse osteocalcin antiserum (biotinylated osteocalcin, antibody specific for the C‐terminus), one 12‐ml vial
    • Streptavidin–horseradish peroxidase, one 11‐ml vial
    • Peroxidase substrate TMB (3,31 ,5,51 ‐tetramethyl benzidine), one 6‐ml vial
    • Hydrogen peroxide Solution, one 6‐ml vial
    • Stop solution (contains hydrochloric and phosphoric acids), one 12‐ml vial
    • One 96‐well plate (8‐well removable strips) coated with a polyclonal osteocalcin antibody directed against the N‐terminus
    • Adhesive plate sealer
  • Unknown samples: serum ( protocol 1 ) or plasma ( protocol 2 )
  • ELISA plate washer (optional)
  • ELISA plate reader that can measure absorbance at 450 nm
CAUTION: Some components of this kit contain isothiazolones (5 ppm) as preservative. Stop solution contains hydrochloric and phosphoric acids. Keep all materials away from the skin and eyes.

Basic Protocol 5: Measurement of Mouse/Rat PINP by a Commercial Available Competitive ELISA

  Materials
  • Lyophilized rat/mouse PINP calibrators 0 to 5 and controls 1 and 2 (from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/): reconstitute calibrators and controls with 0.5 ml of distilled or deionized water, replace stopper, and let stand 5 to 10 min at room temperature; invert several times to ensure complete reconstitution (the exact value of each calibrator is printed on the bottle label; store reconstituted calibrators and controls at −20°C)
  • Unknown samples: serum ( protocol 1 ) or plasma ( protocol 2 )
  • Sample Diluent (20 ml per bottle; from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/)
  • PINP biotin: lyophilized phosphate‐buffered saline containing PINP labeled with biotin, and BSA; 1 ml per bottle (from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/)—reconstitute with 8 ml of Sample Diluent, replace stopper, and let stand for 5 to 10 min at room temperature; invert several times to ensure complete reconstitution
  • 20× Wash Solution, Phosphate‐Saline Concentrate (50 ml per bottle; from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/): transfer contents to a graduated cylinder, bring volume up to 1000 ml with distilled or deionized water, and mix
  • Enzyme Conjugate: phosphate‐buffered saline containing avidin linked to horseradish peroxidase, protein, enzyme stabilizers and preservative (18 ml per bottle; from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/)
  • TMB Substrate: aqueous formulation of TMB (3,31 ,5,51 ‐tetramethyl benzidine) and hydrogen peroxide (24 ml per bottle; from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/)
  • Stop Solution: 0.5 M hydrochloric acid (14 ml per bottle; from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/)
  • 96‐well plate (8 well removable strips) coated with polyclonal rabbit anti‐PINP antibody (from Competitive ELISA kit; IDS Ltd, http://www.idsplc.com/)
  • Precision multichannel pipettes to deliver 45 µl, 50 µl, and 150 µl
  • Adhesive plate sealers
  • Microplate shaker
  • Automatic microplate washer (optional)
  • ELISA Plate Reader that can measure absorbance at 450 nm (reference 650 nm)

Basic Protocol 6: Quantification of Steroids in Mouse Plasma Using Online SPE Coupled to LC‐MS/MS

  Materials
  • Mice
  • Norit A (activated charcoal, practical grade; Serva)
  • [13 C 2 ]testosterone (Cambridge Isotope Laboratories, https://www.cdnisotopes.com/)
  • d8‐corticosterone (C/D/N Isotopes, https://www.cdnisotopes.com/)
  • Methanol (HPLC grade, Merck)
  • ZnSO 4 (p.a., Merck)
  • Testosterone (Sigma)
  • Corticosterone (Sigma)
  • Androstenedione (Steraloids, http://steraloids.com/)
  • Acetonitrile (HPLC grade, Roth, http://www.carlroth.com/)
  • Formic acid (mass spectrometry, Fluka Analytical)
  • Double‐distilled water (or HPLC grade)
  • Centrifuges (Beckmann Avanti J 20, Hettich UNIVERSAL 32 R)
  • 50‐ml conical tubes (e.g., BD Falcon)
  • Vortexer (Vortex‐Genie 2 or VWR Scientific DVX‐2500 Multi‐Tube Vortexer)
  • Labinco LD‐79 rotator (http://www.labinco‐bv.com/)
  • Sterile syringe filter (0.22 µm, Millipore)
  • Microbalance (e.g., Sartorius ME36S)
  • 10‐ 50‐, and 100‐ml narrow‐necked volumetric flasks
  • 1.5‐ml polypropylene safe‐lock reaction vials (e.g., Fisher Scientific)
  • Heidolph Reax 2 overhead shaker (http://www.heidolph‐instruments.com/)
  • Polyamide membrane filter (0.2 µm, Whatman)
  • Bottle‐top filter unit (Nalgene)
  • Oasis HLB column: 15 µm, 20 mm × 1.2 mm (Waters)
  • Allure Biphenyl column, 5 µm, 50 mm x 2.1 mm (Restek, http://www.restek.com)
  • 4000 QTRAP triple quadrupole mass spectrometer equipped with a Turbo V source (AB Sciex)
  • Analyst 1.5.1 software (AB Sciex)
  • Prominence HPLC consisting of two HPLC pumps (LC‐20AB—binary, LC‐20AD—isocratic), an autosampler (SIL‐20AC), a column oven including a 6‐port switching valve (CTO‐20), and a controlling unit (CBM‐20A) (Shimadzu)
  • Additional reagents and equipment for collection of blood from the retro‐orbital sinus of mice (Rathkolb et al., ) and preparation of plasma ( protocol 2 )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 1. Equipment of the clinical chemistry laboratory at the GMC used for blood sample processing. (A ) Li‐heparin‐coated (orange cap) and EDTA‐coated (red cap) sample tubes used for blood collection for clinical‐chemical analyses, ELISAs, and other assays. (B ) Biofuge fresco (Heraeus) used to separate plasma from cells. (C ) Plasma samples for the measurement of clinical chemical parameters; 1.5‐ml sample tubes containing the plasma specimens fit into the bigger tubes delivered with the sample racks for the AU480‐analyzer.
    View Image
  •   Figure 2. Equipment of the clinical chemistry laboratory of the GMC used for the determination of clinical chemical parameters in mouse plasma. (A ) The AU480 clinical chemistry analyzer (Beckman Coulter). (B ) Racks with prepared samples are loaded into the sample supply of the analyzer to be processed. Here, the formerly used AU400 analyzer (Olympus) is shown.
    View Image
  •   Figure 3. Principles of ELISA technology. (A ) Sandwich ELISA. (1) Plate is coated with a capture antibody; (2) sample is added, and any antigen present binds to capture antibody; (3) detecting antibody is added, and binds to antigen; (4) enzyme‐linked secondary antibody is added, and binds to detecting antibody; (5) substrate is added, and is converted by enzyme to detectable form (e.g., color change into yellow). (B ) Competitive ELISA. (1) Plate is coated with a capture antibody; (2) sample is added, and any antigen present binds to capture antibody; (3) enzyme‐conjugated antigen is added, unlabeled antigen from samples and the enzyme‐conjugated antigen compete for binding to the capture antibody; (4) substrate is added, and is converted by enzyme to detectable form (e.g., color change into yellow). Competitive ELISAs yield an inverse curve, where higher values of antigen in the samples or standards yield a lower amount of color development.
    View Image
  •   Figure 4. Representative chromatogram of measured steroids in mouse plasma (including internal standards).
    View Image

Videos

Literature Cited

   Bancroft, J. 1980. Endocrinology of sexual function. Clin. Obstet. Gynaecol. 7:253‐281.
   Banfi, G. and Daverio, R. 1994. In vitro stability of osteocalcin. Clin. Chem. 40:833‐834.
   Bansal, N., Houle, A., and Melnykovych, G. 1991. Apoptosis: Mode of cell death induced in T cell leukemia lines by dexamethasone and other agents. FASEB J. 5:211‐216.
   Bellem, A., Meiyappan, S., Romans, S., and Einstein, G. 2011. Measuring estrogens and progestagens in humans: An overview of methods. Gend. Med. 8:283‐299.
   Biason‐Lauber, A., Boscaro, M., Mantero, F., and Balercia, G. 2010. Defects of steroidogenesis. J. Endocrinol. Invest. 33:756‐766.
   Chen, P., Satterwhite, J.H., Licata, A.A., Lewiecki, E.M., Sipos, A.A., Misurski, D.M., and Wagman, R.B. 2005. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J. Bone Miner. Res. 20:962‐970.
   Chowen, J.A., Azcoitia, I., Cardona‐Gomez, G.P., and Garcia‐Segura, L.M. 2000. Sex steroids and the brain: Lessons from animal studies. J. Pediatr. Endocrinol. Metab. 13:1045‐1066.
   Crowther, J.R. 2009. The ELISA Guidebook, 2nd ed. Methods Mol. Biol. 516:1‐566.
   Curtis, A.S. and Forrester, J.V. 1984. The competitive effects of serum proteins on cell adhesion. J. Cell Sci. 71:17‐35.
   Engvall, E. and Perlmann, P. 1971. Enzyme‐linked immunosorbent assay (ELISA): Quantitative assay of immunoglobulin G. Immunochemistry 8:871‐874.
   Fernández, I., Pena, A., Del Teso, N., Pérez, V., and Rodriguez‐Cuesta, J. 2010. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J. Am. Assoc. Lab. Anim. Sci. 49:202‐206.
   Finkelstein, J.S., Leder, B.Z., Burnett, S.M., Wyland, J.J., Lee, H., de la Paz, A.V., Gibson, K., and Neer, R.M. 2006. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J. Clin. Endocrinol. Metab. 91:2882‐2887.
   Fuchs, H., Gailus‐Durner, V., Adler, T., Aguilar‐Pimentel, J.A., Becker, L., Calzada‐Wack, J., Da Silva‐Buttkus, P., Neff, F., Götz, A., Hans, W., Hölter, S.M., Horsch, M., Kastenmüller, G., Kemter, E., Lengger, C., Maier, H., Matloka, M., Möller, G., Naton, B., Prehn, C., Puk, O., Racz, I., Rathkolb, B., Römisch‐Margl, W., Rozman, J., Wang‐Sattler, R., Schrewe, A., Stöger, C., Tost, M., Adamski, J., Aigner, B., Beckers, J., Behrendt, H., Busch, D.H., Esposito, I., Graw, J., Illig, T., Ivandic, B., Klingenspor, M., Klopstock, T., Kremmer, E., Mempel, M., Neschen, S., Ollert, M., Schulz, H., Suhre, K., Wolf, E., Wurst, W., Zimmer, A., and Hrabě de Angelis, M. 2011. Mouse phenotyping. Methods 53:120‐135.
   Gailus‐Durner, V., Fuchs, H., Becker, L., Bolle, I., Brielmeier, M., Calzada‐Wack, J., Elvert, R., Ehrhardt, N., Dalke, C., Franz, T.J., Grundner‐Culemann, E., Hammelbacher, S., Hölter, S.M., Hölzlwimmer, G., Horsch, M., Javaheri, A., Kalaydjiev, S.V., Klempt, M., Kling, E., Kunder, S., Lengger, C., Lisse, T., Mijalski, T., Naton, B., Pedersen, V., Prehn, C., Przemeck, G., Racz, I., Reinhard, C., Reitmeir, P., Schneider, I., Schrewe, A., Steinkamp, R., Zybill, C., Adamski, J., Beckers, J., Behrendt, H., Favor, J., Graw, J., Heldmaier, G., Höfler, H., Ivandic, B., Katus, H., Kirchhof, P., Klingenspor, M., Klopstock, T., Lengeling, A., Müller, W., Ohl, F., Ollert, M., Quintanilla‐Martinez, L., Schmidt, J., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Busch, D.H., and Hradě de Angelis, M. 2005. Introducing the German Mouse Clinic: Open access platform for standardized phenotyping. Nat. Methods 2:403‐404.
   Gailus‐Durner, V., Fuchs, H., Adler, T., Aguilar Pimentel, A., Becker, L., Bolle, I., Calzada‐Wack, J., Dalke, C., Ehrhardt, N., Ferwagner, B., Hans, W., Hölter, S.M., Hölzlwimmer, G., Horsch, M., Javaheri, A., Kallnik, M., Kling, E., Lengger, C., Mörth, C., Mossbrugger, I., Naton, B., Prehn, C., Puk, O., Rathkolb, B., Rozman, J., Schrewe, A., Thiele, F., Adamski, J., Aigner, B., Behrendt, H., Busch, D.H., Favor, J., Graw, J., Heldmaier, G., Ivandic, B., Katus, H., Klingenspor, M., Klopstock, T., Kremmer, E., Ollert, M., Quintanilla‐Martinez, L., Schulz, H., Wolf, E., Wurst, W., and Hrabě de Angelis, M. 2009. Systemic first‐line phenotyping. Methods Mol. Biol. 530:463‐509.
   Garnero, P., Grimaux, M., Seguin, P., and Delmas, P.D. 1994. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J. Bone Miner. Res. 9:255‐264.
   Hale, L.V., Galvin, R.J., Risteli, J., Ma, Y.L., Harvey, A.K., Yang, X., Cain, R.L., Zeng, Q., Frolik, C.A., Sato, M., Schmidt, A.L., and Geiser, A.G. 2007. PINP: A serum biomarker of bone formation in the rat. Bone 40:1103‐1109.
   Haller, F., Prehn, C., and Adamski, J. 2010. Quantification of steroids in human and mouse plasma using online solid phase extraction coupled to liquid chromatography tandem mass spectrometry. Nat. Protoc. 10.1038/nprot.2010.22.
   Hardy, R., Rabbitt, E.H., Filer, A., Emery, P., Hewison, M., Stewart, P.M., Gittoes, N.J., Buckley, C.D., Raza, K., and Cooper, M.S. 2008. Local and systemic glucocorticoid metabolism in inflammatory arthritis. Ann. Rheum. Dis. 67:1204‐1210.
   Hornbeck, P. 1991. Enzyme‐linked immunosorbent assays. Curr. Protoc. Immunol. 1:2.1.1‐2.1.22.
   Jerome, C.P. 2004. Hormonal therapies and osteoporosis. ILAR J. 45:170‐178.
   Jung, K., Wesslau, C., Priem, F., Schreiber, G., and Zubek, A. 1987. Specific creatinine determination in laboratory animals using the new enzymatic test kit “Creatinine‐PAP”. J. Clin. Chem. Clin. Biochem. 25:357‐361.
   Justice, M.J. 2008. Removing the cloak of invisibility: Phenotyping the mouse. Dis. Model Mech. 1:109‐112.
   Keppler, A., Gretz, N., Schmidt, R., Kloetzer, H.M., Groene, H.J., Lelongt, B., Meyer, M., Sadick, M., and Pill, J. 2007. Plasma creatinine determination in mice and rats: An enzymatic method compares favorably with a high‐performance liquid chromatography assay. Kidney Int. 71:74‐78.
   Keski‐Rahkonen, P., Huhtinen, K., Poutanen, M., and Auriola, S. 2011. Fast and sensitive liquid chromatography‐mass spectrometry assay for seven androgenic and progestagenic steroids in human serum. J. Steroid Biochem. Mol. Biol. 127:396‐404.
   Lee, A.J., Hodges, S., and Eastell, R. 2000. Measurement of osteocalcin. Ann. Clin. Biochem. 37:432‐446.
   Lisse, T.S., Thiele, F., Fuchs, H., Hans, W., Przemeck, G.K., Abe, K., Rathkolb, B., Quintanilla‐Martinez, L., Hoelzlwimmer, G., Helfrich, M., Wolf, E., Ralston, S.H., and Hrabě de Angelis, M. 2008. ER stress‐mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. 4:e7.
   Melkko, J., Kauppila, S., Niemi, S., Risteli, L., Haukipuro, K., Jukkola, A., and Risteli, J. 1996. Immunoassay for intact amino‐terminal propeptide of human type I procollagen. Clin. Chem. 42:947‐954.
   Meyer, M.H., Meyer, R.A. Jr., Gray, R.W., and Irwin, R.L. 1985. Picric acid methods greatly overestimate serum creatinine in mice: More accurate results with high‐performance liquid chromatography. Anal. Biochem. 144:285‐290.
   Mindnich, R. and Adamski, J. 2007. Functional genome analysis indicates loss of 17beta‐hydroxysteroid dehydrogenase type 2 enzyme in the zebrafish. J. Ster. Biochem. Mol. Biol. 103:35‐43.
   Möller, G. and Adamski, J. 2006. Multifunctionality of human 17beta‐hydroxysteroid dehydrogenases. Mol. Cell. Endocrinol. 248:47‐55.
   Nemzek, J.A., Bolgos, G.L., Williams, B.A., and Remick, D.G. 2001. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm. Res. 50:523‐527.
   Nenonen, A., Cheng, S., Ivaska, K.K., Alatalo, S.L., Lehtimaki, T., Schmidt‐Gayk, H., Uusi‐Rasi, K., Heinonen, A., Kannus, P., Sievanen, H., Vuori, I., Vaananen, H.K., and Halleen, J.M. 2005. Serum TRACP 5b is a useful marker for monitoring alendronate treatment: Comparison with other markers of bone turnover. J. Bone Miner. Res. 20:1804‐1812.
   O'Malley, B.W. and Tsai, M.‐J. 1992. Molecular pathways of steroid receptor action. Biol. Reprod. 46:163‐167.
   Palm, M. and Lundblad, A. 2005. Creatinine concentration in plasma from dog, rat, and mouse: A comparison of 3 different methods. Vet. Clin. Pathol. 34:232‐236.
   Parikka, V., Peng, Z., Hentunen, T., Risteli, J., Elo, T., Vaananen, H.K., and Harkonen, P. 2005. Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor‐alpha‐deficient male and female mice. Eur. J. Endocrinol. 152:301‐314.
   Prehn, C., Ströhle, F., Haller, F., Keller, B., Hrabě de Angelis, M., Adamski, J., and Mindnich, R. 2007. A comparison of methods for assays of steroidogenic enzymes: New GC/MS versus HPLC and TLC. In Enzymology and Molecular Biology of Carbonyl Metabolism, vol. 13 (H. Weiner, B. Plapp, R. Lindhal, and E. Maser, eds.) pp. 277‐283. Purdue University Press, West Lafayette, Ind.
   Rathkolb, B., Decker, T., Fuchs, E., Soewarto, D., Fella, C., Heffner, S., Pargent, W., Wanke, R., Balling, R., Hrabě de Angelis, M., Kolb, H.J., and Wolf, E. 2000. The clinical‐chemical screen in the Munich ENU Mouse Mutagenesis Project: screening for clinically relevant phenotypes. Mamm. Genome 11:543‐546.
   Rathkolb, B., Fuchs, H, Gailus‐Durner, V., Aigner, B., Wolf, E., and Hrabě de Angelis, M. 2013. Blood collection from mice and hematological analyses on mouse blood. Curr. Protoc. Mouse Biol. 3:101‐119.
   Risteli, J. and Risteli, L. 2006. Products of bone collagen metabolism. In Dynamics of Bone and Cartilage Metabolism: Principles and Clinical Applications, 2nd ed. (M.J. Seibel, S.P. Robbins, and J.P. Bilezikian, eds.) pp. 391‐405. Academic Press, London.
   Rosenfeld, L. 2002. Clinical chemistry since 1800: Growth and development. Clin. Chem. 48:186‐197.
   Sabrautzki, S., Rubio‐Aliaga, I., Hans, W., Fuchs, H., Rathkolb, B., Calzada‐Wack, J., Cohrs, C.M., Klaften, M., Seedorf, H., Eck, S., Benet‐Pages, A., Favor, J., Esposito, I., Strom, T.M., Wolf, E., Lorenz‐Depiereux, B., and Hrabě de Angelis, M. 2012. New mouse models for metabolic bone diseases generated by genome‐wide ENU mutagenesis. Mamm. Genome 23:416‐430.
   Tomlinson, J.W. and Stewart, P.M. 2007. Modulation of glucocorticoid action and the treatment of type‐2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 21:607‐619.
   Van Weemen, B.K. and Schuurs, A.H. 1971. Immunoassay using antigen‐enzyme conjugates. FEBS Lett. 15:232‐236.
   Visser, L., Zuurbier, C.J., van Wezel, H.B., van der Vusse, G.J., and Hoek, F.J. 2004. Overestimation of plasma nonesterified fatty acid concentrations in heparinized blood. Circulation 110:e328.
   Wakana, S., Suzuki, T., Furuse, T., Kobayashi, K., Miura, I., Kaneda, H., Yamada, I., Motegi, H., Toki, H., Inoue, M., Minowa, O., Noda, T., Waki, K., Tanaka, N., Masuya, H., and Obata, Y. 2009. Introduction to the Japan Mouse Clinic at the RIKEN BioResource Center. Exp. Anim. 58:443‐450.
   Wilson, J.D., Griffin, J.E., and George, F.W. 1980. Sexual differentiation: Early hormone synthesis and action. Biol. Reprod. 22:9‐17.
Key References
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序