Clinical Chemistry and Other Laboratory Tests on Mouse Plasma or Serum
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
Besides hematological analyses, many other parameters, including clinical chemistry and endocrinological values, can be determined from mouse blood samples. For most of these tests, plasma or serum samples are used. Data obtained by these investigations provide indications of genotype effects on metabolism and organ functions. Here we describe in detail the considerations that have to be taken into account to get adequate samples for plasma or serum analyses and the recommended sample processing for different investigations. Furthermore, we describe established methods used in the German Mouse Clinic (GMC) to determine clinical chemical parameters; for more in?depth analysis of specific classes of biomarkers, we provide instructions for ELISAs (sandwich and competitive) as well as LC?MS/MS, focusing on markers associated with bone or steroid metabolism in the mouse as working examples. Curr. Protoc. Mouse Biol. 3:69?100 © 2013 by John Wiley & Sons, Inc.
Keywords: mouse; clinical chemistry; steroids; osteocalcin; PINP; ELISA; mass spectrometry
Table of Contents
- Introduction
- Basic Protocol 1: Serum Preparation from Mouse Blood
- Basic Protocol 2: Plasma Preparation from Mouse Blood
- Basic Protocol 3: Analysis of Clinical‐Chemical Parameters in Mouse Plasma Using the AU480 System
- Basic Protocol 4: Measurement of Mouse Osteocalcin by a Commercially Available Sandwich ELISA (Direct Detection)
- Basic Protocol 5: Measurement of Mouse/Rat PINP by a Commercial Available Competitive ELISA
- Basic Protocol 6: Quantification of Steroids in Mouse Plasma Using Online SPE Coupled to LC‐MS/MS
- Commentary
- Literature Cited
- Figures
- Tables
Materials
Basic Protocol 1: Serum Preparation from Mouse Blood
Materials
Basic Protocol 2: Plasma Preparation from Mouse Blood
Materials
Basic Protocol 3: Analysis of Clinical‐Chemical Parameters in Mouse Plasma Using the AU480 System
Materials
Basic Protocol 4: Measurement of Mouse Osteocalcin by a Commercially Available Sandwich ELISA (Direct Detection)
Materials
Basic Protocol 5: Measurement of Mouse/Rat PINP by a Commercial Available Competitive ELISA
Materials
Basic Protocol 6: Quantification of Steroids in Mouse Plasma Using Online SPE Coupled to LC‐MS/MS
Materials
|
Figures
-
Figure 1. Equipment of the clinical chemistry laboratory at the GMC used for blood sample processing. (A ) Li‐heparin‐coated (orange cap) and EDTA‐coated (red cap) sample tubes used for blood collection for clinical‐chemical analyses, ELISAs, and other assays. (B ) Biofuge fresco (Heraeus) used to separate plasma from cells. (C ) Plasma samples for the measurement of clinical chemical parameters; 1.5‐ml sample tubes containing the plasma specimens fit into the bigger tubes delivered with the sample racks for the AU480‐analyzer. View Image -
Figure 2. Equipment of the clinical chemistry laboratory of the GMC used for the determination of clinical chemical parameters in mouse plasma. (A ) The AU480 clinical chemistry analyzer (Beckman Coulter). (B ) Racks with prepared samples are loaded into the sample supply of the analyzer to be processed. Here, the formerly used AU400 analyzer (Olympus) is shown. View Image -
Figure 3. Principles of ELISA technology. (A ) Sandwich ELISA. (1) Plate is coated with a capture antibody; (2) sample is added, and any antigen present binds to capture antibody; (3) detecting antibody is added, and binds to antigen; (4) enzyme‐linked secondary antibody is added, and binds to detecting antibody; (5) substrate is added, and is converted by enzyme to detectable form (e.g., color change into yellow). (B ) Competitive ELISA. (1) Plate is coated with a capture antibody; (2) sample is added, and any antigen present binds to capture antibody; (3) enzyme‐conjugated antigen is added, unlabeled antigen from samples and the enzyme‐conjugated antigen compete for binding to the capture antibody; (4) substrate is added, and is converted by enzyme to detectable form (e.g., color change into yellow). Competitive ELISAs yield an inverse curve, where higher values of antigen in the samples or standards yield a lower amount of color development. View Image -
Figure 4. Representative chromatogram of measured steroids in mouse plasma (including internal standards). View Image
Videos
Literature Cited
Bancroft, J. 1980. Endocrinology of sexual function. Clin. Obstet. Gynaecol. 7:253‐281. | |
Banfi, G. and Daverio, R. 1994. In vitro stability of osteocalcin. Clin. Chem. 40:833‐834. | |
Bansal, N., Houle, A., and Melnykovych, G. 1991. Apoptosis: Mode of cell death induced in T cell leukemia lines by dexamethasone and other agents. FASEB J. 5:211‐216. | |
Bellem, A., Meiyappan, S., Romans, S., and Einstein, G. 2011. Measuring estrogens and progestagens in humans: An overview of methods. Gend. Med. 8:283‐299. | |
Biason‐Lauber, A., Boscaro, M., Mantero, F., and Balercia, G. 2010. Defects of steroidogenesis. J. Endocrinol. Invest. 33:756‐766. | |
Chen, P., Satterwhite, J.H., Licata, A.A., Lewiecki, E.M., Sipos, A.A., Misurski, D.M., and Wagman, R.B. 2005. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J. Bone Miner. Res. 20:962‐970. | |
Chowen, J.A., Azcoitia, I., Cardona‐Gomez, G.P., and Garcia‐Segura, L.M. 2000. Sex steroids and the brain: Lessons from animal studies. J. Pediatr. Endocrinol. Metab. 13:1045‐1066. | |
Crowther, J.R. 2009. The ELISA Guidebook, 2nd ed. Methods Mol. Biol. 516:1‐566. | |
Curtis, A.S. and Forrester, J.V. 1984. The competitive effects of serum proteins on cell adhesion. J. Cell Sci. 71:17‐35. | |
Engvall, E. and Perlmann, P. 1971. Enzyme‐linked immunosorbent assay (ELISA): Quantitative assay of immunoglobulin G. Immunochemistry 8:871‐874. | |
Fernández, I., Pena, A., Del Teso, N., Pérez, V., and Rodriguez‐Cuesta, J. 2010. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J. Am. Assoc. Lab. Anim. Sci. 49:202‐206. | |
Finkelstein, J.S., Leder, B.Z., Burnett, S.M., Wyland, J.J., Lee, H., de la Paz, A.V., Gibson, K., and Neer, R.M. 2006. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J. Clin. Endocrinol. Metab. 91:2882‐2887. | |
Fuchs, H., Gailus‐Durner, V., Adler, T., Aguilar‐Pimentel, J.A., Becker, L., Calzada‐Wack, J., Da Silva‐Buttkus, P., Neff, F., Götz, A., Hans, W., Hölter, S.M., Horsch, M., Kastenmüller, G., Kemter, E., Lengger, C., Maier, H., Matloka, M., Möller, G., Naton, B., Prehn, C., Puk, O., Racz, I., Rathkolb, B., Römisch‐Margl, W., Rozman, J., Wang‐Sattler, R., Schrewe, A., Stöger, C., Tost, M., Adamski, J., Aigner, B., Beckers, J., Behrendt, H., Busch, D.H., Esposito, I., Graw, J., Illig, T., Ivandic, B., Klingenspor, M., Klopstock, T., Kremmer, E., Mempel, M., Neschen, S., Ollert, M., Schulz, H., Suhre, K., Wolf, E., Wurst, W., Zimmer, A., and Hrabě de Angelis, M. 2011. Mouse phenotyping. Methods 53:120‐135. | |
Gailus‐Durner, V., Fuchs, H., Becker, L., Bolle, I., Brielmeier, M., Calzada‐Wack, J., Elvert, R., Ehrhardt, N., Dalke, C., Franz, T.J., Grundner‐Culemann, E., Hammelbacher, S., Hölter, S.M., Hölzlwimmer, G., Horsch, M., Javaheri, A., Kalaydjiev, S.V., Klempt, M., Kling, E., Kunder, S., Lengger, C., Lisse, T., Mijalski, T., Naton, B., Pedersen, V., Prehn, C., Przemeck, G., Racz, I., Reinhard, C., Reitmeir, P., Schneider, I., Schrewe, A., Steinkamp, R., Zybill, C., Adamski, J., Beckers, J., Behrendt, H., Favor, J., Graw, J., Heldmaier, G., Höfler, H., Ivandic, B., Katus, H., Kirchhof, P., Klingenspor, M., Klopstock, T., Lengeling, A., Müller, W., Ohl, F., Ollert, M., Quintanilla‐Martinez, L., Schmidt, J., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Busch, D.H., and Hradě de Angelis, M. 2005. Introducing the German Mouse Clinic: Open access platform for standardized phenotyping. Nat. Methods 2:403‐404. | |
Gailus‐Durner, V., Fuchs, H., Adler, T., Aguilar Pimentel, A., Becker, L., Bolle, I., Calzada‐Wack, J., Dalke, C., Ehrhardt, N., Ferwagner, B., Hans, W., Hölter, S.M., Hölzlwimmer, G., Horsch, M., Javaheri, A., Kallnik, M., Kling, E., Lengger, C., Mörth, C., Mossbrugger, I., Naton, B., Prehn, C., Puk, O., Rathkolb, B., Rozman, J., Schrewe, A., Thiele, F., Adamski, J., Aigner, B., Behrendt, H., Busch, D.H., Favor, J., Graw, J., Heldmaier, G., Ivandic, B., Katus, H., Klingenspor, M., Klopstock, T., Kremmer, E., Ollert, M., Quintanilla‐Martinez, L., Schulz, H., Wolf, E., Wurst, W., and Hrabě de Angelis, M. 2009. Systemic first‐line phenotyping. Methods Mol. Biol. 530:463‐509. | |
Garnero, P., Grimaux, M., Seguin, P., and Delmas, P.D. 1994. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J. Bone Miner. Res. 9:255‐264. | |
Hale, L.V., Galvin, R.J., Risteli, J., Ma, Y.L., Harvey, A.K., Yang, X., Cain, R.L., Zeng, Q., Frolik, C.A., Sato, M., Schmidt, A.L., and Geiser, A.G. 2007. PINP: A serum biomarker of bone formation in the rat. Bone 40:1103‐1109. | |
Haller, F., Prehn, C., and Adamski, J. 2010. Quantification of steroids in human and mouse plasma using online solid phase extraction coupled to liquid chromatography tandem mass spectrometry. Nat. Protoc. 10.1038/nprot.2010.22. | |
Hardy, R., Rabbitt, E.H., Filer, A., Emery, P., Hewison, M., Stewart, P.M., Gittoes, N.J., Buckley, C.D., Raza, K., and Cooper, M.S. 2008. Local and systemic glucocorticoid metabolism in inflammatory arthritis. Ann. Rheum. Dis. 67:1204‐1210. | |
Hornbeck, P. 1991. Enzyme‐linked immunosorbent assays. Curr. Protoc. Immunol. 1:2.1.1‐2.1.22. | |
Jerome, C.P. 2004. Hormonal therapies and osteoporosis. ILAR J. 45:170‐178. | |
Jung, K., Wesslau, C., Priem, F., Schreiber, G., and Zubek, A. 1987. Specific creatinine determination in laboratory animals using the new enzymatic test kit “Creatinine‐PAP”. J. Clin. Chem. Clin. Biochem. 25:357‐361. | |
Justice, M.J. 2008. Removing the cloak of invisibility: Phenotyping the mouse. Dis. Model Mech. 1:109‐112. | |
Keppler, A., Gretz, N., Schmidt, R., Kloetzer, H.M., Groene, H.J., Lelongt, B., Meyer, M., Sadick, M., and Pill, J. 2007. Plasma creatinine determination in mice and rats: An enzymatic method compares favorably with a high‐performance liquid chromatography assay. Kidney Int. 71:74‐78. | |
Keski‐Rahkonen, P., Huhtinen, K., Poutanen, M., and Auriola, S. 2011. Fast and sensitive liquid chromatography‐mass spectrometry assay for seven androgenic and progestagenic steroids in human serum. J. Steroid Biochem. Mol. Biol. 127:396‐404. | |
Lee, A.J., Hodges, S., and Eastell, R. 2000. Measurement of osteocalcin. Ann. Clin. Biochem. 37:432‐446. | |
Lisse, T.S., Thiele, F., Fuchs, H., Hans, W., Przemeck, G.K., Abe, K., Rathkolb, B., Quintanilla‐Martinez, L., Hoelzlwimmer, G., Helfrich, M., Wolf, E., Ralston, S.H., and Hrabě de Angelis, M. 2008. ER stress‐mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. 4:e7. | |
Melkko, J., Kauppila, S., Niemi, S., Risteli, L., Haukipuro, K., Jukkola, A., and Risteli, J. 1996. Immunoassay for intact amino‐terminal propeptide of human type I procollagen. Clin. Chem. 42:947‐954. | |
Meyer, M.H., Meyer, R.A. Jr., Gray, R.W., and Irwin, R.L. 1985. Picric acid methods greatly overestimate serum creatinine in mice: More accurate results with high‐performance liquid chromatography. Anal. Biochem. 144:285‐290. | |
Mindnich, R. and Adamski, J. 2007. Functional genome analysis indicates loss of 17beta‐hydroxysteroid dehydrogenase type 2 enzyme in the zebrafish. J. Ster. Biochem. Mol. Biol. 103:35‐43. | |
Möller, G. and Adamski, J. 2006. Multifunctionality of human 17beta‐hydroxysteroid dehydrogenases. Mol. Cell. Endocrinol. 248:47‐55. | |
Nemzek, J.A., Bolgos, G.L., Williams, B.A., and Remick, D.G. 2001. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm. Res. 50:523‐527. | |
Nenonen, A., Cheng, S., Ivaska, K.K., Alatalo, S.L., Lehtimaki, T., Schmidt‐Gayk, H., Uusi‐Rasi, K., Heinonen, A., Kannus, P., Sievanen, H., Vuori, I., Vaananen, H.K., and Halleen, J.M. 2005. Serum TRACP 5b is a useful marker for monitoring alendronate treatment: Comparison with other markers of bone turnover. J. Bone Miner. Res. 20:1804‐1812. | |
O'Malley, B.W. and Tsai, M.‐J. 1992. Molecular pathways of steroid receptor action. Biol. Reprod. 46:163‐167. | |
Palm, M. and Lundblad, A. 2005. Creatinine concentration in plasma from dog, rat, and mouse: A comparison of 3 different methods. Vet. Clin. Pathol. 34:232‐236. | |
Parikka, V., Peng, Z., Hentunen, T., Risteli, J., Elo, T., Vaananen, H.K., and Harkonen, P. 2005. Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor‐alpha‐deficient male and female mice. Eur. J. Endocrinol. 152:301‐314. | |
Prehn, C., Ströhle, F., Haller, F., Keller, B., Hrabě de Angelis, M., Adamski, J., and Mindnich, R. 2007. A comparison of methods for assays of steroidogenic enzymes: New GC/MS versus HPLC and TLC. In Enzymology and Molecular Biology of Carbonyl Metabolism, vol. 13 (H. Weiner, B. Plapp, R. Lindhal, and E. Maser, eds.) pp. 277‐283. Purdue University Press, West Lafayette, Ind. | |
Rathkolb, B., Decker, T., Fuchs, E., Soewarto, D., Fella, C., Heffner, S., Pargent, W., Wanke, R., Balling, R., Hrabě de Angelis, M., Kolb, H.J., and Wolf, E. 2000. The clinical‐chemical screen in the Munich ENU Mouse Mutagenesis Project: screening for clinically relevant phenotypes. Mamm. Genome 11:543‐546. | |
Rathkolb, B., Fuchs, H, Gailus‐Durner, V., Aigner, B., Wolf, E., and Hrabě de Angelis, M. 2013. Blood collection from mice and hematological analyses on mouse blood. Curr. Protoc. Mouse Biol. 3:101‐119. | |
Risteli, J. and Risteli, L. 2006. Products of bone collagen metabolism. In Dynamics of Bone and Cartilage Metabolism: Principles and Clinical Applications, 2nd ed. (M.J. Seibel, S.P. Robbins, and J.P. Bilezikian, eds.) pp. 391‐405. Academic Press, London. | |
Rosenfeld, L. 2002. Clinical chemistry since 1800: Growth and development. Clin. Chem. 48:186‐197. | |
Sabrautzki, S., Rubio‐Aliaga, I., Hans, W., Fuchs, H., Rathkolb, B., Calzada‐Wack, J., Cohrs, C.M., Klaften, M., Seedorf, H., Eck, S., Benet‐Pages, A., Favor, J., Esposito, I., Strom, T.M., Wolf, E., Lorenz‐Depiereux, B., and Hrabě de Angelis, M. 2012. New mouse models for metabolic bone diseases generated by genome‐wide ENU mutagenesis. Mamm. Genome 23:416‐430. | |
Tomlinson, J.W. and Stewart, P.M. 2007. Modulation of glucocorticoid action and the treatment of type‐2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 21:607‐619. | |
Van Weemen, B.K. and Schuurs, A.H. 1971. Immunoassay using antigen‐enzyme conjugates. FEBS Lett. 15:232‐236. | |
Visser, L., Zuurbier, C.J., van Wezel, H.B., van der Vusse, G.J., and Hoek, F.J. 2004. Overestimation of plasma nonesterified fatty acid concentrations in heparinized blood. Circulation 110:e328. | |
Wakana, S., Suzuki, T., Furuse, T., Kobayashi, K., Miura, I., Kaneda, H., Yamada, I., Motegi, H., Toki, H., Inoue, M., Minowa, O., Noda, T., Waki, K., Tanaka, N., Masuya, H., and Obata, Y. 2009. Introduction to the Japan Mouse Clinic at the RIKEN BioResource Center. Exp. Anim. 58:443‐450. | |
Wilson, J.D., Griffin, J.E., and George, F.W. 1980. Sexual differentiation: Early hormone synthesis and action. Biol. Reprod. 22:9‐17. | |
Key References |