丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Complementation Assays Adapted for DNA Repair-Deficient Keratinocytes

互联网

473
Genetic alterations affecting nucleotide excision repair, the most versatile DNA-repair mechanism responsible for removal of bulky DNA adducts including ultraviolet (UV) light-induced DNA lesions, may result in the rare, recessively inherited autosomal syndromes xeroderma pigmentosum (XP), Cockayne syndrome (CS), or trichothiodystrophy (TTD). Classical approaches such as somatic cell fusions or microinjection assays have formalized the genetic complexity of these related but clinically distinct syndromes, and contributed to the determination of seven, five, and three complementation groups for XP, CS, and TTD, respectively. XP patients are highly susceptible to photoinduced cutaneous cancers of epidermal origin. To better study the responses to UV irradiation of XP keratinocytes, and to objectively determine the extent to which cutaneous gene therapy may be realized, we set up experimental procedures adapted to ex vivo genetic complementation of keratinocytes from XP patients. We provide here detailed rationales and procedures for these approaches.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序