Genetic and environmental factors contribute in the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis, the most common and severe manifestation of SLE, involves inflammation in the kidney leading to loss of renal function. However, it is not clear what controls the progression of lupus nephritis; this is an important research question, considering its implications in clinical treatment of lupus nephritis. Finding genes that underlie the development and progression of lupus nephritis will shed light on this question. NZM2328 is a spontaneous mouse model for SLE. Most NZM2328 female mice develop autoantibodies (e.g., antinuclear antibody and anti-dsDNA antibody), glomerulonephritis (GN), and severe proteinuria between 5 and 12 months of age. In contrast, C57L/J mice fail to exhibit similar signs of autoimmune disease. We used classical genetics to map and identify SLE genes in offspring generated by backcrossing C57L/J to NZM2328. Quantitative trait loci (QTL) controlling acute (Agnz1 and Agnz2) and chronic (Cgnz1 ) GN features were uncovered by the analysis. To verify the Cgnz1 and Agnz1 on distal mouse chromosome 1, we produced the NZM23238.C57Lc1 (Lc1) congenic strain, which replaced NZM2328 Cgnz1 and Agnz1 alleles with those derived from C57L/J. The development of acute GN and chronic GN was markedly reduced in Lc1 mice, confirming the linkage findings. Further mapping by the generation of intrachromosomal recombinants of NZM2328.Lc1 support the thesis that acute GN and chronic GN are under separate genetic control.