Characterization and Validation of Cre‐Driver Mouse Lines
互联网
- Abstract
- Table of Contents
- Figures
- Literature Cited
Abstract
Conditional gene manipulations in mice are increasingly popular strategies in biomedical research. These approaches rely on the production of conditional genetically engineered mutant mouse (GEMM) lines with mutations in protein?encoding genes. These conditional GEMMs are then bred with one or several transgenic mouse lines expressing a site?specific recombinase, most often the Cre recombinase, in a tissue?specific manner. Conditional GEMMs can only be exploited if Cre transgenic mouse lines are available to generate somatic mutations, and thus the number of Cre transgenic lines has significantly increased over the last 15 years. Once produced, these transgenic lines must be validated for reliable, efficient, and specific Cre expression and Cre?mediated recombination. In this overview, the minimum level of information that is ideally required to validate a Cre?driver transgenic line is first discussed. The vagaries associated with validation procedures are considered next, and some solutions are proposed to assess the expression and activity of constitutive or inducible Cre recombinase before undertaking extensive breeding experiments and exhaustive phenotyping. Curr. Protoc. Mouse Biol. 1:1?15. © 2011 by John Wiley & Sons, Inc.
Keywords: site?specific recombination; conditional mutagenesis; inducible Cre; functional genomic
Table of Contents
- Introduction
- Specificity and Efficiency of Cre Expression
- Specificity and Efficiency of Cre‐Mediated Deletion
- Anatomical Pattern of Cre‐Mediated Deletion
- Additional or Alternative Procedures to Detect Cre Expression
- Phenotypic Characterization of Cre Lines
- Summary
- Acknowledgments
- Literature Cited
- Figures
- Tables
Materials
Figures
-
Figure 1. Flow chart combining simple assays allowing one to characterize Cre recombinase expression and activity in transgenic Cre lines from the genomic to the cellular level. Each step can also be applied to complete or confirm available data on Cre‐driver lines. G, generation; tg, transgenic; β–gal, β‐galactosidase; AP, alkaline phosphatase; RT‐qPCR, quantitative real‐time reverse transcriptase PCR; qPCR, quantitative PCR. View Image -
Figure 2. (A ) Schematic representation of the CreERT2 transgene used for pronuculei injection (Feil et al., ; Indra et al., ). The pair of primers used for RT‐qPCR amplification of Cre transcripts is located in the β‐globin region between a tissue‐specific promoter X (pX) and the CreERT2 gene. (B ) RXRαΔAF2(LNL) mouse line. This line is used as a floxed reporter line for determination of Cre recombinase activity by qPCR. A floxed Neo cassette is inserted between exon 9 and 10 of the RXRα gene, and a mutation ~undefined) is present in exon 10 (Mascrez et al., ). Three pairs of primers have been designed that allow specific amplification of the wild‐type (WT, green), floxed (LNL, blue), and excised (L, pink) alleles. Ex, exon; In, Intron; pA, polyadenylation site; pX, promoter of the gene X. View Image -
Figure 3. Characterization of Cre expression in the ubiquitous Ppm1a‐CreERT2 (A, B ) and digestive tract‐specific Vil1‐CreERT2 (C ) mouse lines. (A, C) Comparison of relative Cre expression between different transgenic lines ( N is at least 2 for each line) determined by RT‐qPCR in 25 tissue samples. (B) Comparison of relative expression of Cre versus the endogenous Ppm1a mRNAs ( N = 2). View Image -
Figure 4. Determination of Cre‐mediated excision by qPCR in the ubiquitous Ppm1a‐CreERT2 (A ) and digestive tract‐specific Vil1‐CreERT2 (B ) mouse lines. Comparison of the percentage of excised allele (L) versus floxed (LNL) and wild type (WT) allele in double transgenic animals Ppm1a‐CreERT2 /RXRαΔAF2(LNL) and Vil1‐CreERT2 /RXRαΔAF2(LNL) mice injected with vehicle (top) or with tamoxifen (bottom). For tamoxifen injections, tamoxifen (Sigma, cat. no. T56648) was prepared at 10 mg/ml in sunflower seed oil (Sigma, cat. no. S5007). Intraperitoneal injection of 100 µl of this solution was performed for 5 consecutive days (1 mg/mouse/day) with mice aged 10 weeks old, and whose weight was >20 g. Identical amounts of sunflower seed oil (vehicle) were administered following the same protocol to control mice. View Image -
Figure 5. Schematic representation of the construction and activity of the three most popular colorimetric reporter lines used to test for Cre activity in Cre‐driver transgenic lines. β‐gal, β‐galactosidase; AP, alkaline phosphatase; CMV, cytomegalovirus; PGK, phosphoglycerate kinase; CAT, chloramphenicol acetyltransferase; pA, polyadenylation site. View Image -
Figure 6. Characterization of Cre activity at histological level in the Ppm1a‐CreERT2 mice line. (A ) Cre‐mediated expression of the reporter gene β‐galactosidase in nine organs dissected from double‐transgenic Ppm1a‐CreERT2 /ROSA26 mice injected with tamoxifen. (B ) XGal (ROSA, ACZL) and hAP (Z/AP) staining of muscle sections revealing (i) the reporter expression pattern in three different colorimetric reporter lines crossed with a CMV‐Cre deleter mice (bottom row) (Dupe et al., ), and (ii) the localization of Cre activity in Ppm1a‐CreERT2 mice crossed with each of these reporter lines (top row). View Image -
Figure 7. Characterization of Cre activity at histological level in the Tph2‐CreERT2 and Ins1‐CreERT2 mouse lines. (A ) Sections through the pons, midbrain, and medulla revealing Cre activity in the raphe nuclei through Cre‐mediated expression of the reporter gene β‐galactosidase (Tph2‐CreERT2 /ROSA26 mice injected with tamoxifen, top row) and Cre expression through ISH with a specific Cre probe (Tph2‐CreERT2 mice, bottom row). (B ) IHC detection of Cre protein and Xgal staining of pancreas sections of tamoxifen or vehicle‐injected Ins1‐CreERT2 /ROSA26 mice revealed specific Cre protein content and Cre activity restricted to the islets of Langerhans. ISH procedures have been described elsewhere (Chotteau‐Lelievre et al., ; Gofflot et al., ). For IHC, primary rabbit anti‐Cre (1:8000 dilution, VWR, cat. no. 69050‐3) was used with goat anti‐rabbit antibody coupled to horseradish peroxidase (1:100 dilution; Invitrogen, cat. no. G‐21234) as secondary antibody. After washing, Cre was visualized by FITC‐tyramide amplification (1/50, 30‐min incubation) (PerkinElmer, cat. no. SAT701B). View Image -
Figure 8. Phenotypic analysis of the Vil1‐CreERT2 transgenic line. (A ) Schematic representation of the mouse BAC used for the construction of the Vil1‐CreERT2 transgene. (B ) Expression of mRNA levels of the GPCR Tgr5 in the ileum of control and Vil1‐CreERT2 transgenic mice. (C ) Mean ± SD of the area under the curve during an oral glucose tolerance test in control ( N = 8) and Vil1‐CreERT2 ( N = 8) mice fed a high‐fat, high‐sucrose diet for 12 weeks. (D ‐E ) Insulin and GLP‐1 levels measured in the serum 15 min after the administration of the oral glucose load in the control and Vil1‐CreERT2 transgenic mice of panel (B). View Image
Videos
Literature Cited
Literature Cited | |
Akagi, K., Sandig, V., Vooijs, M., Van der Valk, M., Giovannini, M., Strauss, M., and Berns, A. 1997. Cre‐mediated somatic site‐specific recombination in mice. Nucleic Acids Res. 25:1766‐1773. | |
Argmann, C.A., Chambon, P., and Auwerx, J. 2005. Mouse phenogenomics: The fast track to “systems metabolism”. Cell Metab. 2:349‐360. | |
Austin, C.P., Battey, J.F., Bradley, A., Bucan, M., Capecchi, M., Collins, F.S., Dove, W.F., Duyk, G., Dymecki, S., Eppig, J.T., Grieder, F.B., Heintz, N., Hicks, G., Insel, T.R., Joyner, A., Koller, B.H., Lloyd, K.C., Magnuson, T., Moore, M.W., Nagy, A., Pollock, J.D., Roses, A.D., Sands, A.T., Seed, B., Skarnes, W.C., Snoddy, J., Soriano, P., Stewart, D.J., Stewart, F., Stillman, B., Varmus, H., Varticovski, L., Verma, I.M., Vogt, T.F., von Melchner, H., Witkowski, J., Woychik, R.P., Wurst, W., Yancopoulos, G.D., Young, S.G., and Zambrowicz, B. 2004. The knockout mouse project. Nat. Genet. 36:921‐924. | |
Auwerx, J., Avner, P., Baldock, R., Ballabio, A., Balling, R., Barbacid, M., Berns, A., Bradley, A., Brown, S., Carmeliet, P., Chambon, P., Cox, R., Davidson, D., Davies, K., Duboule, D., Forejt, J., Granucci, F., Hastie, N., de Angelis, M.H., Jackson, I., Kioussis, D., Kollias, G., Lathrop, M., Lendahl, U., Malumbres, M., von Melchner, H., Müller, W., Partanen, J., Ricciardi‐Castagnoli, P., Rigby, P., Rosen, B., Rosenthal, N., Skarnes, B., Stewart, A.F., Thornton, J., Tocchini‐Valentini, G., Wagner, E., Wahli, W., and Wurst, W. 2004. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36:925‐927. | |
Birling, M.C., Gofflot, F., and Warot, X. 2009. Site‐specific recombinases for manipulation of the mouse genome. Methods Mol. Biol. 561:245‐263. | |
Bookout, A.L., Cummins, C.L., Mangelsdorf, D.J., Pesola, J.M., and Kramer, M.F. 2006. High‐throughput real‐time quantitative reverse transcription PCR. Curr. Protoc. Mol. Biol. 73:15.8.1‐15.8.28. | |
Branda, C.S. and Dymecki, S.M. 2004. Talking about a revolution: The impact of site‐specific recombinases on genetic analyses in mice. Dev Cell 6:7‐28. | |
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., and Wittwer, C.T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real‐time PCR experiments. Clin. Chem. 55:611‐622. | |
Champy, M.F., Selloum, M., Piard, L., Zeitler, V., Caradec, C., Chambon, P., and Auwerx, J. 2004. Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm. Genome 15:768‐783. | |
Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294‐5299. | |
Chotteau‐Lelievre, A., Dolle, P., and Gofflot, F. 2006. Expression analysis of murine genes using in situ hybridization with radioactive and nonradioactively labeled RNA probes. Methods Mol. Biol. 326:61‐87. | |
Collins, F.S., Rossant, J., and Wurst, W. 2007. A mouse for all reasons. Cell 128:9‐13. | |
Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K., and McMahon, A.P. 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen‐inducible form of Cre recombinase. Curr. Biol. 8:1323‐1326. | |
Dupe, V., Davenne, M., Brocard, J., Dolle, P., Mark, M., Dierich, A., Chambon, P., and Rijli, F.M. 1997. In vivo functional analysis of the Hoxa‐1 3′ retinoic acid response element (3′RARE). Development 124:399‐410. | |
Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. 1996. Ligand‐activated site‐specific recombination in mice. Proc. Natl. Acad. Sci. U.S.A. 93:10887‐10890. | |
Feil, R., Wagner, J., Metzger, D., and Chambon, P. 1997. Regulation of Cre recombinase activity by mutated estrogen receptor ligand‐binding domains. Biochem. Biophys. Res. Commun. 237:752‐757. | |
Forni, P.E., Scuoppo, C., Imayoshi, I., Taulli, R., Dastru, W., Sala, V., Betz, U.A., Muzzi, P., Martinuzzi, D., Vercelli, A.E., Kageyama, R., and Ponzetto, C. 2006. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J. Neurosci. 26:9593‐9602. | |
Gofflot, F., Chartoire, N., Vasseur, L., Heikkinen, S., Dembele, D., Le Merrer, J., and Auwerx, J. 2007. Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell 131:405‐418. | |
Hayashi, S. and McMahon, A.P. 2002. Efficient recombination in diverse tissues by a tamoxifen‐inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305‐318. | |
Indra, A.K., Warot, X., Brocard, J., Bornert, J.M., Xiao, J.H., Chambon, P., and Metzger, D. 1999. Temporally‐controlled site‐specific mutagenesis in the basal layer of the epidermis: Comparison of the recombinase activity of the tamoxifen‐inducible Cre‐ER(T) and Cre‐ER(T2) recombinases. Nucleic Acids Res. 27:4324‐4327. | |
Kaelin, C.B., Gong, L., Xu, A.W., Yao, F., Hockman, K., Morton, G.J., Schwartz, M.W., Barsh, G.S., and MacKenzie, R.G. 2006. Signal transducer and activator of transcription (stat) binding sites but not stat3 are required for fasting‐induced transcription of agouti‐related protein messenger ribonucleic acid. Mol. Endocrinol. 20:2591‐2602. | |
Kellendonk, C., Tronche, F., Casanova, E., Anlag, K., Opherk, C., and Schutz, G. 1999. Inducible site‐specific recombination in the brain. J. Mol. Biol. 285:175‐182. | |
Knoll, J.H., Lichter, P., Bakdounes, K., and Eltoum, I.‐E. A. 2007. In situ hybridization and detection using nonisotopic probes. Curr. Protoc. Mol. Biol. 79:14.7.1‐14.7.17. | |
Lakso, M., Sauer, B., Mosinger, B. Jr., Lee, E.J., Manning, R.W., Yu, S.H., Mulder, K.L., and Westphal, H. 1992. Targeted oncogene activation by site‐specific recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 89:6232‐6236. | |
Lewandoski, M. 2001. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2:743‐755. | |
Lifschitz‐Mercer, B., Sheinin, Y., Ben‐Meir, D., Bramante‐Schreiber, L., Leider‐Trejo, L., Karby, S., Smorodinsky, N.I., and Lavi, S. 2001. Protein phosphatase 2Calpha expression in normal human tissues: An immunohistochemical study. Histochem. Cell Biol. 116:31‐39. | |
Lobe, C.G., Koop, K.E., Kreppner, W., Lomeli, H., Gertsenstein, M., and Nagy, A. 1999. Z/AP, a double reporter for cre‐mediated recombination. Dev. Biol. 208:281‐292. | |
Lusis, A.J., Yu, J., and Wang, S.S. 2007. The problem of passenger genes in transgenic mice. Arterioscler Thromb. Vasc. Biol. 27:2100‐2103. | |
Mandillo, S., Tucci, V., Hölter, S.M., Meziane, H., Banchaabouchi, M.A., Kallnik, M., Lad, H.V., Nolan, P.M., Ouagazzal, A.M., Coghill, E.L., Gale, K., Golini, E., Jacquot, S., Krezel, W., Parker, A., Riet, F., Schneider, I., Marazziti, D., Auwerx, J., Brown, S.D., Chambon, P., Rosenthal, N., Tocchini‐Valentini, G., Wurst, W. 2008. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: A cross‐laboratory study. Physiol. Genomics 34:243‐255. | |
Mascrez, B., Mark, M., Dierich, A., Ghyselinck, N.B., Kastner, P., and Chambon, P. 1998. The RXRalpha ligand‐dependent activation function 2 (AF‐2) is important for mouse development. Development 125:4691‐4707. | |
Meseguer, A. and Catterall, J.F. 1987. Mouse kidney androgen‐regulated protein messenger ribonucleic acid is expressed in the proximal convoluted tubules. Mol. Endocrinol. 1:535‐541. | |
Metzger, D. and Chambon, P. 2001. Site‐ and time‐specific gene targeting in the mouse. Methods 24:71‐80. | |
Nagy, A. 2000. Cre recombinase: The universal reagent for genome tailoring. Genesis 26:99‐109. | |
Nagy, A., Mar, L., and Watts, G. 2009. Creation and use of a cre recombinase transgenic database. Methods Mol. Biol. 530:1‐14. | |
Pinto, D., Robine, S., Jaisser, F., El Marjou, F.E., and Louvard, D. 1999. Regulatory sequences of the mouse villin gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small and large intestines. J. Biol. Chem. 274:6476‐6482. | |
Rajewsky, K., Gu, H., Kuhn, R., Betz, U.A., Muller, W., Roes, J., and Schwenk, F. 1996. Conditional gene targeting. J. Clin. Invest. 98:600‐603. | |
Robine, S., Jaisser, F., and Louvard, D. 1997. Epithelial cell growth and differentiation. IV. Controlled spatiotemporal expression of transgenes: New tools to study normal and pathological states. Am. J. Physiol. 273:G759‐G762. | |
Sauer, B. and Henderson, N. 1989. Cre‐stimulated recombination at loxP‐containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17:147‐161. | |
Schmidt‐Supprian, M. and Rajewsky, K. 2007. Vagaries of conditional gene targeting. Nat. Immunol. 8:665‐668. | |
Schwenk, F., Kuhn, R., Angrand, P.O., Rajewsky, K., and Stewart, A.F. 1998. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26:1427‐1432. | |
Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70‐71. | |
Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J., and Schoonjans, K. 2008. Targeting bile‐acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7:678‐693. | |
Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., Pellicciari, R., Auwerx, J., and Schoonjans, K. 2009. TGR5‐mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10:167‐177. | |
Vasioukhin, V., Degenstein, L., Wise, B., and Fuchs, E. 1999. The magical touch: Genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. U.S.A. 96:8551‐8556. | |
Vooijs, M., Jonkers, J., and Berns, A. 2001. A highly efficient ligand‐regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2:292‐297. | |
Weber, P., Metzger, D., and Chambon, P. 2001. Temporally controlled targeted somatic mutagenesis in the mouse brain. Eur. J. Neurosci. 14:1777‐1783. |