Expanding Mouse Ventricular Cardiomyocytes Through GSK‐3 Inhibition
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
Controlled proliferation of cardiomyocytes remains a major limitation in cell biology and one of the main underlying hurdles for true modern regenerative medicine. Here, a technique is described for robust expansion of early fetal?derived mouse ventricular cardiomyocytes on a platform usable for high?throughput molecular screening, tissue engineering and, potentially, in vivo translational experiments. This method provides a small?molecule approach to control proliferation or differentiation of early beating cardiomyocytes through modulation of the Wnt/??catenin signaling pathway. Moreover, isolation and expansion of fetal cardiomyocytes takes less than 3 weeks, yields a relatively pure (?70%) functional myogenic population, and is highly reproducible. Curr. Protoc. Cell Biol . 61:23.9.1?23.9.10. © 2013 by John Wiley & Sons, Inc.
Keywords: cardiomyocyte proliferation; differentiation; isolation; expansion; GSK?3 inhibitor; Wnt/??catenin signaling
Table of Contents
- Introduction
- Basic Protocol 1: Isolation of Fetal Ventricular Cardiomyocytes
- Basic Protocol 2: Two‐Dimensional Culture of Fetal Ventricular Cardiomyocytes
- Alternate Protocol 1: Three‐Dimensional Culture of Fetal Ventricular Cardiomyocytes
- Reagents and Solutions
- Commentary
- Literature Cited
- Figures
- Tables
Materials
Basic Protocol 1: Isolation of Fetal Ventricular Cardiomyocytes
Materials
Basic Protocol 2: Two‐Dimensional Culture of Fetal Ventricular Cardiomyocytes
Materials
|
Figures
-
Figure 23.9.1 Isolation and plating of ventricular myocytes. (A ) Dissected mouse uterus containing multiple embryos. (B ) Mouse embryo at ∼E12.5. Dashed lines indicate where incisions should be made to yield the heart. (C ) Fetal mouse heart. Dashed lines indicate excision of atrial tissue. (D ) Pooling of ventricular tissue in 15‐ml tubes. Two to three tubes can be used for biological replicates. (E ) Representative image of ventricular cells stained for cardiac troponin T (cTnT; green), the proliferation marker Ki67 (red), and DAPI (blue). Scale bar, 50 µm. (F ) Quantification of the number of cTnT+ cells relative to total cells 1 day after isolation (E12.5+1). (G ) Quantification of cTnT+ cell number per well of a 384‐well plate. In F and G, error bars indicate standard deviation; n = 3 each in six technical replicates. View Image -
Figure 23.9.2 Two‐dimensional expansion and differentiation of ventricular myocytes. Representative images of ventricular cells cultured in (A ) DMSO, (B ) BIO, or (C ) IWR, stained for cardiac troponin T (cTnT; green), Ki67 (red), and DAPI (blue). Scale bar, 50 µm. (D ) Quantification of cTnT+ cells at day 1 (E12.5+1, baseline) and after 3 and 6 additional days of culture (E12.5+4, E12.5+7) in the presence or absence of BIO (1 or 2 µM) or IWR (8 or 16 µM). Error bars indicate standard deviation; n = 3 each in six technical replicates for each time point. View Image -
Figure 23.9.3 Three‐dimensional culture of ventricular myocytes. Representative bright‐field images of ventricular cells cultured in aggregates treated with (A ) DMSO, (B ) BIO, or (C ) IWR. Scale bar, 50 µm. (D ) Quantification of the diameter of ventricular tissue constructs after treatment with DMSO, BIO (1 or 2 µM), or IWR (8 or 16 µM). Error bars indicate standard deviation; n = 3 each in three technical replicates. (E ) qRT‐PCR analysis for structural cardiac genes after treatment with DMSO, BIO (2.5 µM), or IWR (16 µM). Error bars indicate standard deviation; n = 3. View Image
Videos
Literature Cited
Akins, R.E. , Boyce, R.A. , Madonna, M.L. , Schroedl, N.A. , Gonda, S.R. , McLaughlin, T.A. , and Hartzell, C.R. 1999. Cardiac organogenesis in vitro: Reestablishment of three‐dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 5:103‐118. | |
Buckingham, M. , Meilhac, S. , and Zaffran, S. 2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6:826‐835. | |
Buikema, J.W. , Mady, A.S. , Mittal, N.V. , Atmanli, A. , Caron, L. , Doevendans, P.A. , Sluijter, J.P. , and Domian, I.J. 2013a. Wnt/β‐catenin signaling directs the regional expansion of first and second heart field‐derived ventricular cardiomyocytes. Development 140:4165‐4176. | |
Buikema, J. , van der Meer, P. , Sluijter, J.P. , and Domian, I.J. 2013b. Engineering myocardial tissue: The convergence of stem cells biology and tissue engineering technology. Stem Cells doi:10.1002/stem.1467 [Epub ahead of print]. | |
Bursac, N. , Papadaki, M. , White, J.A. , Eisenberg, S.R. , Vunjak‐Novakovic, G. , and Freed, L.E. 2003. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9:1243‐1253. | |
Cai, C.L. , Liang, X. , Shi, Y. , Chu, P.H. , Pfaff, S.L. , Chen, J. , and Evans, S. 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5:877‐889. | |
Chen, B. , Dodge, M.E. , Tang, W. , Lu, J. , Ma, Z. , Fan, C.W. , Wei, S. , Hao, W. , Kilgore, J. , Williams, N.S. , Roth, M.G. , Amatruda, J.F. , Chen, C. , and Lum, L. 2009. Small molecule‐mediated disruption of Wnt‐dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5:100‐107. | |
Domian, I.J. , Chiravuri, M. , van der Meer, P. , Feinberg, A.W. , Shi, X. , Shao, Y. , Wu, S.M. , Parker, K.K. , and Chien, K.R. 2009. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326:426‐429. | |
Eulalio, A. , Mano, M. , Dal Ferro, M. , Zentilin, L. , Sinagra, G. , Zacchigna, S. , and Giacca, M. 2012. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376‐381. | |
Jopling, C. , Sleep, E. , Raya, M. , Marti, M. , Raya, A. , and Izpisua Belmonte, J.C. 2010. Zebrafish heart regeneration occurs bycardiomyocyte dedifferentiation and proliferation. Nature 464:606‐609. | |
Kikuchi, K. , Holdway, J.E. , Werdich, A.A. , Anderson, R.M. , Fang, Y. , Egnaczyk, G.F. , Evans, T. , Macrae, C.A. , Stainier, D.Y. , and Poss, K.D. 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464 601‐605. | |
Kunick, C. , Lauenroth, K. , Leost, M. , Meijer, L. , and Lemcke, T. 2004. 1‐Azakenpaullone is a selective inhibitor of glycogen synthase kinase‐3 beta. Bioorg. Med. Chem. Lett. 14:413‐416. | |
Kwon, C. , Arnold, J. , Hsiao, E.C. , Taketo, M.M. , Conklin, B.R. , and Srivastava, D. 2007. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc. Natl. Acad. Sci. U.S.A. 104:10894‐10899. | |
Laugwitz, K.L. , Moretti, A. , Lam, J. , Gruber, P. , Chen, Y. , Woodard, S. , Lin, L.Z. , Cai, C.L. , Lu, M.M. , Reth, M. , Platoshyn, O. , Yuan, J.X. , Evans, S. , and Chien, K.R. 2005. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647‐653. | |
Lin, L. , Cui, L. , Zhou, W. , Dufort, D. , Zhang, X. , Cai, C.L. , Bu, L. , Yang, L. , Martin, J. , Kemler, R. , Rosenfeld, M.G. , Chen, J. , and Evans, S.M. 2007. Beta‐catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl. Acad. Sci. U.S.A. 104:9313‐9318. | |
Lu, J. , Ma, Z. , Hsieh, J.C. , Fan, C.W. , Chen, B. , Longgood, J.C. , Williams, N.S. , Amatruda, J.F. , Lum, L. , and Chen, C. 2009. Structure‐activity relationship studies of small‐molecule inhibitors of Wnt response. Bioorg. Med. Chem. Lett. 19:3825‐3827. | |
Meijer, L. , Skaltsounis, A.L. , Magiatis, P. , Polychronopoulos, P. , Knockaert, M. , Leost, M. , Ryan, X.P. , Vonica, C.A. , Brivanlou, A. , Dajani, R. , Crovace, C. , Tarricone, C. , Musacchio, A. , Roe, S.M. , Pearl, L. , and Greengard, P. 2003. GSK‐3‐selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10:1255‐1266. | |
Moorman, A.F. and Christoffels, V.M. 2003. Cardiac chamber formation: Development, genes, and evolution. Physiol. Rev. 83:1223‐1267. | |
Poss, K.D. , Wilson, L.G. , and Keating, M.T. 2002 Heart regeneration in zebrafish. Science 298:2188‐2190. | |
Qyang, Y. , Martin‐Puig, S. , Chiravuri, M. , Chen, S. , Xu, H. , Bu, L. , Jiang, X. , Lin, L. , Granger, A. , Moretti, A. , Caron, L. , Wu, X. , Clarke, J. , Taketo, M.M. , Laugwitz, K.L. , Moon, R.T. , Gruber, P. , Evans, S.M. , Ding, S. , and Chien, K.R. 2007. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta‐catenin pathway. Cell Stem Cell 1:165‐179. | |
Senyo, S.E. , Steinhauser, M.L. , Pizzimenti, C.L. , Yang, V.K. , Cai, L. , Wang, M. , Wu, T.D. , Guerquin‐Kern, J.L. , Lechene, C.P. , and Lee, R.T. 2013. Mammalian heart renewal by pre‐existing cardiomyocytes. Nature 493:433‐436. | |
Trosset, J.Y. , Dalvit, C. , Knapp, S. , Fasolini, M. , Veronesi, M. , Mantegani, S. , Gianellini, L.M. , Catana, C. , Sundstrom, M. , Stouten, P.F. , and Moll, J.K. 2006. Inhibition of protein‐protein interactions: The discovery of druglike beta‐catenin inhibitors by combining virtual and biophysical screening. Proteins 64:60‐67. | |
Ying, Q.L. , Wray, J. , Nichols, J. , Batlle‐Morera, L. , Doble, B. , Woodgett, J. , Cohen, P. , and Smith, A. 2008. The ground state of embryonic stem cell self‐renewal. Nature 453:519‐523. | |
Internet Resources | |
http://pga.mgh.harvard.edu/primerbank/ | |
PCR primer sequences are available online at PrimerBank. |