丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Modification of the 5′ Terminus of Oligonucleotides for Attachment of Reporter and Conjugate Groups

互联网

2626
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

Reporter and conjugate groups can be added directly to the 5? terminus of oligonucleotides by appropriate modification. Conjugate groups can be used to increase the affinity of complementary strands, induce irreversible modification of target sequences, or enable sequences to recognize and permeate target cell membranes. This overview discusses the 5? modifications that can be used and strategies for the covalent attachment of ligands to the modified oligonucleotides. Step?by?step protocols for attachment of conjugate groups are given elsewhere in the series.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Synthesis
  • Characterization
  • Properties
  • Conclusion
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 4.2.1 Functionalization of oligodeoxynucleotides via phosphite and phosphotriester derivatives. Abbreviations used in figures: B, nucleic base; B′, protected base; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; DMTr, 4,4′‐dimethoxytrityl; Fmoc, 9‐fluorenylmethyl; L, linker; MMTr, monomethoxytrityl; Px,9‐phenylxanthen‐9‐yl(pixyl); R, oligodeoxynucleotide; R′, protected oligonucleotide; TCEP, tris‐(2‐carboxyethyl)phosphine; Tr, trityl; Z, functional group or ligand; Z′, protected functional group or ligand.
    View Image
  •   Figure 4.2.2 Incorporation of 5′‐phosphate and 5′‐phosphorothioate groups into oligodeoxynucleotides. Abbreviations: Thy, thymin‐l‐yl. See Figure for additional definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.3 Incorporation of 5′‐thiol groups into oligodeoxynucleotides. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.4 Incorporation of 5′‐amino groups into oligodeoxynucleotides. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.5 Incorporation of 5′‐carboxyl groups into oligodeoxynucleotides. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.6 Some structures involved in the incorporation of 5′‐diol groups into oligodeoxynucleotides. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.7 Heterobifunctional reagents for the conversion of one oligodeoxynucleotide 5′‐functional group to another.
    View Image
  •   Figure 4.2.8 Modification of oligonucleotides via 5′‐terminal phosphate groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.9 Conjugation of ligands to oligonucleotides via 5′‐terminal phosphate groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.10 Attachment of ligands to oligonucleotides via 5′‐terminal phosphate groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.11 Conjugation of functional groups into oligonucleotides via 5′‐terminal phosphorothioate groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.12 Further structures involved in the modification of oligonucleotides via 5′‐terminal phosphorothioate groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.13 Conjugation of ligands to oligonucleotides via 5′‐thiol groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.14 Incorporation of conjugate groups into oligonucleotides via 5′‐thiol groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.15 Attachment of reporter and conjugate groups to oligonucleotides via 5′‐amino groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.16 Conjugation of functional groups to oligonucleotides via 5′‐amino groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.17 Introduction of functional groups to oligonucleotides via 5′‐amino groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.18 Conjugation of functional groups to oligonucleotides via 5′‐carboxyl groups. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.19 Attachment of functional groups to oligonucleotides via 5′‐terminal cis diols. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.20 Direct addition of ligands to the 5′ ends of oligonucleotides by the phosphotriester coupling method. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.21 Direct addition of ligands to the 5′ end of oligonucleotides by the phosphoramidite coupling method. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.22 Additional examples of direct addition of ligands to the 5′ ends of oligonucleotides by the phosphoramidite coupling method. See Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.23 Direct addition of ligands to the 5′ terminus of oligonucleotides to permit sensitive fluorescence detection. Figure for definitions of functional group abbreviations.
    View Image
  •   Figure 4.2.24 An additional example of direct addition of ligands to the 5′ ends of oligonucleotides to provide fluorescence detection.
    View Image
  •   Figure 4.2.25 Conjugation of two third oligonucleotide strands for triple helical formation with double‐stranded DNA targets via alternate strand recognition. See Figure for definitions of functional group abbreviations.
    View Image

Videos

Literature Cited

Literature Cited
   Agrawal, S., Christodoulou, C., and Gait, M.J. 1986. Efficient method for attaching non‐radioactive labels to the 5′ ends of synthetic oligodeoxyribonucleotides. Nucl. Acids Res. 14:6227‐6245.
   Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., and Zenke, M. 1987. Automated DNA sequencing: Ultrasensitive detection of fluorescent bands during electrophoresis. Nucl. Acids Res. 15:4593‐4602.
   Asseline, U. and Thuong, N.T. 1988. Oligothymidylates substitués par un dérive de l'acridine en position 5′, à la fois en position 5′ et 3′ ou sur un phosphate internucleotidique. Nucleosides Nucleotides 7:431‐455.
   Asseline, U. and Thuong, N.T. 1994. 5′‐5′ tethered oligonucleotides via nucleic bases: A potential new set of compounds for alternate strand triple‐helix formation. Tetrahedron Lett. 35:5221‐5224.
   Asseline, U., Toulmé, F., Thuong, N.T., Delarue, M., Montenay‐Garestier, T., and Hélène, C. 1984. Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence–specific ligands. Influence of dye attachment site. EMBO J. 3:795‐800.
   Asseline, U., Thuong, N.T., and Hélène, C. 1986. Oligothymidylates substitués en position 3′ par un dérivé de l'acridine. Nucleosides Nucleotides 5:45‐63.
   Asseline, U., Bonfils, E., Dupret, D., and Thuong, N.T. 1996. Synthesis and binding properties of oligonucleotides covalently linked to an acridine derivative. A new study of the influence of the dye attachment site. Bioconjugate Chem. 7:369‐379.
   Balbi, A., Sottofattori, E., Grandi, T., and Mazzei, M. 1994. Synthesis and complementary complex formation properties of oligonucleotides covalently linked to new stabilizing agents. Tetrahedron 50:4009‐4018.
   Bannwarth, W., Schmidt, D., Stallard, R.L., Hornung, C., Knorr, R., and Müller, F. 1988. Bathophenanthroline‐ruthenium (II) complexes as non‐radioactive labels for oligonucleotides which can be measured by time‐resolved fluorescence techniques. Helv. Chim. Acta 71:2085‐2099.
   Beal, P.A. and Dervan, P.B. 1991. Second structural motif for recognition of DNA by oligonucleotide directed triple‐helix formation. Science 251:1360‐1363.
   Beaucage, S.L. and Caruthers, M.H. 1981. Deoxynucleoside phosphoramidites. A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22:1859‐1862.
   Bhan, P. and Miller, P.S. 1990. Photo‐crosslinking of psoralen‐derivatized oligonucleotide methylphosphonates to single‐stranded DNA. Bioconjugate Chem. 1:82‐88.
   Blanks, R. and McLaughlin, L.W. 1988. An oligodeoxynucleotide affinity column for the isolation of sequence DNA binding. Nucl. Acids Res. 16:10283‐10299.
   Børresen‐Dale, A.‐L., Hovig, E., and Smith‐Sørensen, B. 1998. Detection of mutations by denaturing gradient gel electrophoresis. In Current Protocols in Human Genetics (N.C. Dracopoli, J.L. Haines, B.T. Korf, D.T. Moir, C.C. Morton, C.E. Seidman, J.G. Seidman, and D.R. Smith, eds.) pp. 7.5.1‐7.5.12. John Wiley & Sons, New York.
   Boutorin, A.S., Vlassov, V.V., Kazakov, S.A., Kutyavin, I.V., and Podominogin, M.A. 1984. Complementary addressed reagents carrying EDTA‐Fe(II) groups for directed cleavage of single‐stranded nucleic acids. FEBS Lett. 172:43‐46.
   Boutorin, A.S., Tokuyama, H., Takasugi, M., Isobe, H., Nakamura, E., and Hélène, C. 1994. Fullerene‐oligonucleotide conjugates: Photo‐induced sequence‐specific DNA cleavage. Angew. Chem. Int. Ed. Engl. 33:2462‐2465.
   Burns, J.A., Butler, J.C., Moran, J., and Whitesides, G.M. 1991. Selective reduction of disulfides by tris(2‐carboxyethyl)phosphine. J. Org. Chem. 56:2648‐2650.
   Chassignol, M. and Thuong, N.T. 1998. Phosphodisulfide bond: A new linker for the oligonucleotide conjugation. Tetrahedron Lett. 39:8271‐8274.
   Chen, C.‐H. and Sigman, D. 1986. Nuclease activity of 1,10‐phenanthroline‐copper: Sequence specific targeting. Proc. Natl. Acad. Sci. U.S.A. 83:7147‐7151.
   Chen, C.‐H. and Sigman, D. 1988. Sequence‐specific scission of RNA by 1,10‐phenanthroline‐copper linked to oligonucleotides. J. Am. Chem. Soc. 110:6570‐6572.
   Chen, J.K., Carlson, D.V., Weith, H.L., O'Brien, J.A., Goldman, M.E., and Cushman, M. 1992. Synthesis of an oligonucleotide‐intercalator conjugate in which the linker chain is attached via the phenolic hydroxyl group of fagaronine. Tetrahedron Lett. 33:2275‐2278.
   Chen, J.‐K., Schultz, R.N., Lloyd, D.H., and Gryaznov, S.M. 1995. Synthesis of oligodeoxyribonucleotide N3′→P5′ phosphoramidates. Nucl. Acids Res. 23:2661‐2668.
   Chu, B. and Orgel, L. 1988. Ligation of oligonucleotides to nucleic acids or protein via disulfide bonds. Nucl. Acids Res. 16:3671‐3691.
   Chu, B., Wahl, G., and Orgel, L. 1983. Derivatization of unprotected polynucleotides. Nucl. Acids Res. 11:6513‐6529.
   Chu, B., et al. 1985. Nonenzymatic sequence‐specific cleavage of single‐stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 82:963‐967.
   Cleland, W.W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry. 3:480‐482.
   Cocuzza, A.J. and Zagorsky, R.J. 1991. A simple preparation of 5′‐biotinylated oligonucleotides and their use as primers in dideoxy‐sequencing of DNA. Nucleosides Nucleotides 10:413‐414.
   Cohen, J.S. (ed.). 1989. Oligonucleotides antisense inhibitors of gene expression. In Topics in Molecular and Structural Biology, Macmillan, New York.
   Collier, D.A., Mergny, J.L., Thuong, N.T., and Hélène, C. 1991. Site‐specific intercalation at the triplex‐duplex junction induces a conformational change which is detectable by hypersensitivity to diethylpyrocabonate. Nucl. Acids Res. 19:4219‐4224.
   Connel, C., Fung, S., Heiner, C., Bridgham, J., Chakerian, V., Heron, E., Jones, S., Menchen, W., Mordan, M., Raff, M., Recknor, M., Smith, L., Springer, J., Woo, S., and Hunkapiller, M. 1987. Automated DNA sequence analysis. BioTechniques 5:342‐348.
   Connolly, B.A. 1985. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes. Nucl. Acids Res. 13:4485‐4502.
   Connolly, B.A. 1987. The synthesis of oligonucleotides containing a primary amino group at the 5′‐terminus. Nucl. Acids Res. 15:3131‐3139.
   Cooney, M., Czernuszewicz, G., Postel, E.H., Flint, S.J., and Hogan, M.E. 1988. Site‐specific oligonucleotide binding represses transcription of the human c‐myc gene in vitro. Science 241:546‐549.
   Costes, B., Girodon, E., Ghanem, N., Chassignol, M., Thuong, N.T., Dupret, D., and Goossens, M. 1993. Psoralen‐modified oligonucleotide primers improve detection of mutations by denaturing gradient gel electrophoresis and provide an alternative to GC‐clamping. Hum. Mol. Genet. 2:393‐397.
   Coull, J.M., Weith, H.L., and Bischoff, R. 1986. A novel method for the introduction of an aliphatic primary amino group at the 5′ terminus of synthetic oligonucleotides. Tetrahedron Lett. 27:3991‐3994.
   Cumber, J.A., Forrester, J.A., Foxwell, B.M., Ross, W.C., and Thorpe, P.E. 1985. Preparation of antibody‐toxin conjugates. Methods Enzymol. 112:207‐225.
   Dietrich, B., Lehn, J.‐M., and Sauvage, J.P. 1969. Diaza‐polyoxa‐macrocycles et macrobicycles. Tetrahedron Lett. 34:2885‐2589.
   Dikalov, S.I., Rumyantseva, G.V., Weiner, L.M., Sergejev, D.S., Frolova, E.I., Godovikova, T.S., and Zarytova, V.F. 1991. Hydroxyl radical generation by oligonucleotide derivatives of anthracycline antibiotic and synthetic quinone. Chem. Biol. Interactions 77:325‐329.
   Dupret, D., Gossens, M., Chassignol, M., and Thuong, N.T. 1994. European Patent 0596028 A1, 1994, 05,11.
   Ebata, K., Masuko, M., Ohtani, H., and Kashiwasake‐Jibu, M. 1995. Nucleic acid hybridization accompagned with excimer formation from two pyrene labeled probes. Photochem. Photobiol. 62:836‐839.
   Eckstein, F. 1983. Phosphorothioate analogues of nucleotides. Tools for the investigation of biochemical processes. Angew. Chem. Int. Ed. Engl. 22:423‐506.
   Escudé, C., Giovannangeli, C., Sun, J.S., Lloyd, D.H., Chen, J.K., Gryaznov, S.M., Garestier, T., and Hélène, C. 1996. Stable triple helices formed by oligonucleotide N3′‐ P5′ phosphoramidates inhibit transcription elongation. Proc. Natl. Acad. Sci. U.S.A. 93:4365‐4369.
   Fedorova, O.S., Savitskii, A.P., Shoikhet, K.G., and Ponomarev, G.V. 1990. Palladium(II)‐coproporphyrin I as a photoactive group in sequence‐specific modification of nucleic acids by oligonucleotide derivatives. FEBS Lett. 259:335‐337.
   François, J.C., Saison‐Behmoaras, T., Barbier, C., Chassignol, M., Thuong, N.T., and Hélène, C. 1989. Sequence‐specific recognition and cleavage of duplex DNA via triple‐helix formation by oligonucleotides covalently linked to a phenanthroline‐copper chelate. Proc. Natl. Acad. Sci. U.S.A. 86:9702‐9706.
   Gao, H., Yang, M., and Cook, A.F. 1995. Stabilization of double‐stranded oligonucleotides using backbone linked disulfide bridges. Nucl. Acids Res. 23:285‐292.
   Garbesi, A., Bonazzi, S., Zanella, M.L., Capobianco, M.L., Giannini, G., and Arcamone, F. 1997. Synthesis and binding properties of conjugates between oligodeoxynucleotides and daunorubicin derivatives. Nucl. Acids Res. 25:2121‐2128.
   Ghetie, V., Till, M.A., Ghetie, M.‐A., Tucker, T., Porter, J., Patzer, E.J., Richardson, J.A. Uhr, J.W., and Vitetta, E.S. 1990. Preparation and characterization of conjugates of recombinant CD4 and deglycosylated ricin A chain using different cross‐linkers. Bioconjugate Chem. 1:24‐31.
   Gilham, P.T. 1962. An addition reaction specific for uridine and guanosine nucleotides and its application to the modification of ribonuclease action. J. Am. Chem. Soc. 84:687‐688.
   Gilham, P.T. and Khorana, H.G. 1958. Studies on polynucleotides. A new and general method for the chemical synthesis of the C5′‐C3′ internucleotidic linkage; syntheses of deoxyribo‐nucleotides. J. Am. Chem. Soc. 80:6212.
   Giovannangeli, C., Rougée, M., Garestier, T., Thuong, N.T., and Hélène, C. 1992a. Triple‐helix formation by oligonucleotides containing the three bases thymine, cytosine and guanine. Proc. Natl. Acad. Sci. U.S.A. 113:8631‐8635.
   Giovannangeli, C., Thuong, N.T., and Hélène, C. 1992b. Oligodeoxynucleotide‐directed photo‐induced cross‐linking of HIV proviral DNA via triple‐helix formation. Nucl. Acids Res. 20:4275‐4281.
   Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Charneau, P., and Hélène, C. 1997. Accessibility of nuclear DNA to triplex‐forming oligonucleotides: The integrated HIV‐1 provirus as a target. Proc. Natl. Acad. U.S.A. 94:79‐84.
   Gotthikh, M., Asseline, U., and Thuong, N.T. 1990. Synthesis of oligonucleotides containing a carboxyl group at either their 5′ end or their 3′ end and their subsequent derivatization by an intercalating agent. Tetrahedron Lett. 31:6657‐6660.
   Grigoriev, M., Praseuth, D., Robin, P., Hémar, A., Saison‐Behmoaras, T., Dautry‐Versat, A., Thuong, N.T., Hélène, C., and Harel‐Bellan, A. 1992. A triple helix–forming oligonucleotide‐intercalator conjugate acts as a transcriptional repressor via inhibition of NK kB binding to interleukin‐2 receptor α‐regulatory sequence. J. Biol. Chem. 267:3389‐3395.
   Grigoriev, M., Praseuth, D., Guieysse, A.L., Robin, P., Thuong, N.T., Hélène, C., and Harel‐Bellan, A. 1993. Inhibition of gene expression by triple helix‐directed DNA cross‐linking at specific sites. Proc. Natl. Acad. Sci. U.S.A. 90:3501‐3505.
   Grimautdinova, O.I., Zenkova, M.L., Karpova, G.G., and Podust, L.M. 1984. Affinity labelling of ribosomes from Escherichia coli with photoactivated analogs of mRNA. Mol. Biol. 18:907‐918.
   Guzaev, A., Salo, H., Azhayev, A., and Lonnberg, H. 1985. A new approach for chemical phosphorylation of oligonucleotides at the 5′‐terminus. Tetrahedron 51:9375‐9384.
   Haugland, R.P. 1989. Handbook of Fluorescent Probes and Research Chemicals, p 54. Molecular Probes, Eugene, Ore.
   Hélène, C. and Saison‐Behmoaras, T. 1994. La stratégie antisens: nouvelles approches thérapeutiques. Medecine/Science. 10:257‐273.
   Hélène, C. and Thuong, N.T. 1988. Oligo‐alpha‐deoxyribonucleotides covalently linked to intercalating agents. A new family of sequence‐specific nucleic acid reagents. In Nucleic Acids and Molecular Biology, Vol. 2 (F. Eckstein and D. Lilley, eds.) pp. 105‐123. Springer‐Verlag, Berlin.
   Horn, T. and Urdea, M.S. 1986. A chemical 5′‐phosphorylation of oligodeoxyribo‐nucleotides that can be monitored by trityl cation release. Tetrahedron Lett. 27:4705‐4708.
   Horne, D.A. and Dervan, P.B. 1990. Recognition of mixed‐sequence duplex DNA by alternate‐strand triple‐helix formation. J. Am. Chem. Soc. 112:2435‐2437.
   Itakura, K., Katagiri, N., Bahl, C.P., Wightman, R.H., and Narang, S.A. 1975. Improved triester approach for the synthesis of pentadecathymidylic acid. J. Am. Chem. Soc. 97:7327‐7246.
   Iyer, R.P., Egan, W., Regan, J., and Beaucage, S.L. 1990. 3H‐1,2‐benzidithiole‐3‐one 1,1‐dioxide as an improved sulfurizing reagent in the solid‐phase synthesis of oligodeoxyribonucleoside phosphorothioates. J. Am. Chem. Soc. 112:1253‐1255.
   Ju, J., Ruan, C., Fuller, C.W., Glazer, A., and Mathies, R. 1995. Fluorescence energy transfer dye‐labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. U.S.A. 92:4347‐4351.
   Ju, J., Glazer, A., and Mathies, R. 1996. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucl. Acids Res. 24:1144‐1148.
   Jue, R., Lambert, J.M., Pierce, L.R., and Traut, R.R. 1978. Addition of sulphydryl group to Escherichia coli ribosomes by protein modification with 2‐iminothiolane (methyl 4‐mercaptobutyrimidate). Biochemistry 17:5399‐5406.
   Julian, R., Duncan, S., Weston, P.D., and Wrigglesworth, R. 1983. A new reagent which may be used to introduce sulphydryl groups into proteins, and its use in the preparation of conjugates for immunoassay. Anal. Biochem. 132:68‐73.
   Korskun, V.A., Pestov, N.B., Birikh, K.R., and Berlin, Y.A. 1992. Reagent for introducing pyrene residues into oligonucleotides. Bioconjugate Chem. 3:559‐562.
   Koshkin, A.A., Kropachev, K.Y., Mamaev, S.V., Bulychev, N.V., Lokhov, S.G., Vlassov, V.V., and Lebedev, A.V. 1994. Ethidium and azidoethidium oligonucleotide derivatives: Synthesis, complementary complex formation and sequence‐specific photomodification of the single‐stranded and double‐stranded target oligo‐ and polynucleotides. J. Mol. Recognit. 7:177‐188.
   Kremsky, J.N., Wooters, J.L., Dougherty, J.P., Meyers, R.E., Collins, M., and Brown, E.L. 1987. Immobilization of DNA via oligonucleotide containing an aldehyde or carboxylic group at the 5′ terminus. Nucl. Acids Res. 15:2891‐2910.
   Kuijpers, W.H.A. and van Boeckel, C.A.A. 1993. A new strategy for the solid‐phase synthesis of 5′‐thiolated oligodeoxynucleotides. Tetrahedron 47:10931‐10944.
   Kuijpers, W.H.A., Bos, E.S., Kasparen, F.M., Veenemam, G.H., and van Boeckel, C.A.A. 1993. Specific recognition of antibody‐oligonucleotide conjugates by radiolabeled antisense nucleotides: A novel approach for two‐step radioimmunotherapy of cancer. Bioconjugate Chem. 4:94‐102.
   Kumar, A., Advani, S., Dawar, H., and Talwar, G.P. 1991. A simple method for introducing a thiol group at the 5′‐end of synthetic oligonucleotides. Nucl. Acids Res. 19:4561.
   Kurfürst, R., Roig, V., Chassignol, M., Asseline, U., and Thuong, N.T. 1993. Oligo‐α‐deoxyribonucleotides with a modified nucleic base and covalently linked to reactive agents. Tetrahedron 49:6975‐6990.
   Kuwabara, M., Yoon, C., Goyne, T., Thederahn, T., and Sigman, D.S. 1986. Nuclease activity of 1,10‐phenanthroline‐copper ion: Reaction with CGCGAATTCGCG and its complexes with Netropsin and EcoRI. Biochemistry 25:7401‐7408.
   Le Doan, T., Perrouault, L., Hélène, C., Chassignol, M., and Thuong, N.T. 1986. Targeted cleavage of polynucleotides by complementary oligonucleotides covalently linked to iron‐porphyrins. Biochemistry 25:6736‐6739.
   Le Doan, T., Perrouault, L., Chassignol, M., Thuong, N.T., and Hélène, C. 1987a. Sequence‐targeted chemical modification of nucleic acids by complementary oligonucleotides covalently linked to porphyrins. Nucl. Acids Res. 15:8643‐8659.
   Le Doan, T., Perrouault, L., Praseuth, D., Habhoub, N., Decout, J.L., Thuong, N.T., Lhomme, J., and Hélène, C. 1987b. Sequence‐specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo‐[α]‐thymidylate covalently linked to an azidoproflavine derivative. Nucl. Acids Res. 15:7749‐7760.
   Lee, B.L., Murakami, A., Blake, K.R., Lin, S.B., and Miller, P.S. 1988. Interaction of psoralen‐derivatized oligodeoxyribonucleoside methylphosphonates with single‐stranded DNA. Biochemistry 27:6736‐6739.
   Letsinger, R.L. and Lunsford, W.B. 1976. Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J. Am. Chem. Soc. 98:3655‐3661.
   Levina, A.S., Tabatadse, D.R., Khalimskaya, L.M., Prichodko, T.A., Sishkin, G.V., Alexandrova, L.A., and Zarytova, V.P. 1993. Oligonucleotide derivatives bearing reactive and stabilizing groups attached to C5 of deoxyuridine. Bioconjugate Chem. 4:319‐325.
   Lin, K.‐Y. and Matteucci, M. 1991. Hybridization properties of deoxyoligonucleotides containing anthraquinone pseudonucleosides. Nucl. Acids Res. 19:3111‐3114.
   Lokhov, S.G., Podyminogin, M.A., Sergeev, D.S., Silnikov, V.N., Kutyavin, I.V., Shishkin, G.V., and Zarytova, V.P. 1992. Synthesis and high stability of complementary complexes of N‐(2‐hydroxyethyl)phenazinium derivatives of oligonucleotides. Bioconjugate Chem. 3:414‐419.
   Lukhtanov, E.A., Kutyavin, I.V., Gorn, V.V., Reed, M.W., Adams, A.D., Lucas, D.D., and Meyer, R.B. 1997a. Sequence and structure dependence of the hybridization‐triggered reaction of oligonucleotides bearing conjugated cyclopropapyrroloindole. J. Am. Chem. Soc. 119:6214‐6225.
   Lukhtanov, E.A., Kutyavin, I.V., Mills, A.G., Gorn, V.V., Reed, M.W., and Meyer, R.B. 1997b. Minor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides. Nucl. Acids Res. 25:5077‐5084.
   McCurdy, S.N., Nelson, J.S., Hirschbein, B.L., and Fearon, K.L. 1997. An improved method for the synthesis of N3′→P5′ phosphoramidate oligonucleotides. Tetrahedron Lett. 38:207‐210.
   Michelson, A.M. and Todd, A.R. 1955. Synthesis of dithymidine dinucleotide containing a 3′‐5′‐internucleotidic linkage. J. Chem. Soc. 2632‐2638.
   Moser, H.E. and Dervan, P.B. 1987. Sequence‐specific cleavage of double helical DNA by triple helix formation. Science 238:645‐650.
   Mouscadet, J.‐F., Ketterlé, C., Goulaouic, H., Carteau, S., Subra, F., Le Bret, M., and Auclair, C. 1994. Triple helix formation with short oligonucleotide‐intercalator conjugates matching the HIV‐1 LTR end sequences. Biochemistry 33:4187‐4196.
   Mungall, W.S., Greene, G.L., Heavner, G.A., and Letsinger, R.L. 1975. Use of the azido group in the synthesis of 5′ terminal aminodeoxythymidine oligonucleotides. J. Org. Chem. 40:1659‐1662.
   Nazarenko, A., Bhatnagar, S.K., and Hohman, R.J. 1997. A closed tube format for amplification and detection of DNA based on energy tranfer. Nucl. Acids Res. 25:2516‐2521.
   Odell, B. 1985. The dissolution of polynucleotides in non‐aqueous solvents using macrocyclic polyethers. J. Chem. Soc. Chem. Commun. 858‐859.
   Olejnik, J., Krzymanska‐Olejnik, E., and Rothschild, K.J. 1996. Photocleavage biotin phosphoramidite for 5′‐end‐labeling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucl. Acids Res. 24:361‐366.
   Pilch, D.S., Levensen, C., and Shafer, R.H. 1991. Structure, stability and thermodynamics of a short intermolecular purine‐purine‐pyrimidine triple‐helix. Biochemistry 30:6081‐6087.
   Praseuth, D., Le Doan, T., Chassignol, M., Decout, J.L., Habhoub, N., Lhomme, J., Thuong, N.T., and Hélène, C. 1988a. Sequence‐targeted photosensitized reactions in nucleic acids by oligo‐[α]‐deoxynucleotides and oligo‐[β]‐deoxynucleotides. Biochemistry. 27:3031‐3038.
   Praseuth, D., Perrouault, L., Le Doan, T., Chassignol, M., Thuong, N.T., and Hélène, C. 1988b. Sequence‐specific binding and photocrosslinking of α and β oligodeoxynucleotides to the major groove of DNA. Proc. Natl. Acad. Sci. U.S.A. 85:1349‐1353.
   Reese, C.B. and Saffhill, R. 1968. Oligonucleotide synthesis via phosphotriester intermediates: The phenyl‐protecting group. J. Chem. Soc. Chem. Commun. 767‐768.
   Schubert, F., Knaf, A., Möller, U., and Cech, D. 1995. Covalent attachment of methylene blue. Nucleosides Nucleotides 14:1437‐1443.
   Schwarz, M.W. and Pfleiderer, W. 1987. Synthesis of terminal nucleoside phosphates and thiophosphates via phosphoramidite chemistry. Nucleosides Nucleotides 6:537‐539.
   Sessler, J.L., Sansom, P.I., Kral, V., O'Connor, D., and Iverson, B.L. 1996. Sapphyrin‐oligonucleotide conjugates. Novel sequence‐specific DNA photomodifying agents with increased binding affinity. J. Am. Chem. Soc. 118:12322‐12330.
   Shimizu, M., Inoue, H., and Ohtsuka, E. 1994. Detailed study of sequence‐specific DNA cleavage of triplex‐forming oligonucleotides linked to 1,10‐phenanthroline. Biochemistry 33:606‐613.
   Silver, G.C., Sun, J.S., Nguyen, C.H., Boutorin, A.S., Bisagni, E., and Hélène, C. 1997. Stable triple‐helical DNA complexes formed by benzopyridoindole‐ and benzopyridoquinoxaline‐oligonucleotide conjugates. J. Am. Chem. Soc. 119:263‐268.
   Smith, L.M., Fung, S., Hunkapiller, M.W., Hunkapiller, T., and Hood, L.E. 1985. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: Synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucl. Acids Res. 13:2399‐2412.
   Sproat, B.S., Beijer, B., Rider, P., and Neumer, P. 1987a. The synthesis of protected 5′‐mercapto‐2′,5′‐dideoxyribonucleoside‐3′‐O‐phosphoramidites; uses of 5′‐mercapto‐oligo‐deoxyribonucleotides. Nucl. Acids Res. 15:4837‐4848.
   Sproat, B.S., Beijer, B., and Rider, P. 1987b. The synthesis of protected 5′‐amino‐2′,5′‐dideoxyribonucleoside‐3′‐O‐phosphoramidites; applications of 5′‐amino‐oligodeoxyribonucleotides. Nucl. Acids Res. 15:6181‐6196.
   Soyfer, V.N. and Potoman, V.N. 1996. Possible spheres of applications of intermolecular triplexes. In Triple‐Helical Nucleic Acids, pp. 253‐284. Springer‐Verlag, New York.
   Stec, W.J., Uznanski, B., and Wilk, A. 1993. Bis(O,O‐diisopropoxy phosphinothioyl)‐disulfide‐A highly efficient sulfurizing reagent for cost‐effective synthesis of oligo(nucleoside phosphorothioate)s. Tetrahedron Lett. 34:5317‐5320.
   Sun, J.S., Francois, J.C., Montenay‐Garestier, T., Saison‐Behmoaras, T., Roig, V., Thuong, N.T., and Hélène, C. 1989. Sequence‐specific intercalating agents. Intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide‐intercalator conjugates. Proc. Natl. Acad. Sci. U.S.A. 86:9198‐9202.
   Sun, J.S., Giovannangeli, C., Francois, J.C., Kurfürst, R., Montenay‐Garestier, T., Asseline, U., Saison‐Behmoaras, T., Thuong, N.T., and Hélène, C. 1991. Triple‐helix formation by α oligodeoxynucleotides and α oligodeoxynucleotide‐intercalator conjugates. Proc. Natl. Acad. Sci. U.S.A. 88:6023‐6027.
   Takasugi, M., Guendouz, A., Chassignol, M., Decout, J.L., Lhomme, J., Thuong, N.T., and Hélène, C. 1991. Sequence‐specific photo‐induced cross‐linking of the two strands of double‐helical DNA by a psoralen covalently linked to a triple helic forming oligonucleotide. Proc. Natl. Acad. Sci. U.S.A. 88:5602‐5606.
   Tam, J.P., Wu, C.‐R., Liu, W., and Zhang, J.‐W. 1991. Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J. Am. Chem. Soc. 113:6657‐6662.
   Thorpe, P.E., Wallace, P.M., Knowles, P.P., Relf, M.G., Brown, A.N.F., Watson, G.J., Knyba, R.E., Wawrzynczak, E.J., and Blakey, D.C. 1987. New coupling agents for synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res. 47:5924‐5931.
   Thuong, N.T. and Asseline, U. 1991. Oligonucleotides attached to intercalators, photoreactive and cleavage agents. In Oligonucleotides and Analogues: A Practical Approach (F. Eckstein, ed.) pp. 283‐308. IRL Press, Oxford.
   Thuong, N.T. and Chassignol, M. 1987. Synthèse et reactivité d'oligothymidylates substitués par un agent intercalant et un groupe thiophosphate. Tetrahedron Lett. 28:4157‐4160.
   Thuong, N.T. and Chassignol, M. 1988. Solid phase synthesis of oligo‐α‐ and oligo‐β deoxynucleotides covalently linked to an acridine. Tetrahedron Lett. 29:5905‐5908.
   Thuong, N.T. and Hélène, C. 1993. Sequence‐specific recognition and modification of double‐helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl. 32:666‐690.
   Thuong, N.T., Hélène, C., and Asseline, U. 1984. European Patent, 84‐400143‐8.
   United States Patent, 1989 4‐835‐263.
   Uhlmann, E. and Engels, J. 1986. Chemical 5′‐phosphorylation of oligonucleotides valuable in automated DNA synthesis. Terahedron Lett. 27:1023‐1026.
   Vu, H. and Hirschbein, B.L. 1991. Internucleotide phosphite sulfurization with tetraethylthiuram disulfide phosphorothioate oligonucleotide synthesis via phosphoramidite chemistry. Tetrahedron Lett. 32:3005‐3008.
   Wachter, L., Jablonski, J.‐A., and Ramachandran, K.L. 1986. A simple and efficient procedure for the synthesis of 5′‐aminoalkyl oligodeoxynucleotides. Nucl. Acids Res. 14:7985‐7994.
   Zarytova, V.F., Godovikova, T.S., Kutyavin, I.V., and Khalimskaya, L.M. 1987. Reactive oligonucleotide derivatives as affinity reagents and probes in molecular biology. In Biophosphates and Their Analogues. Synthesis, Structure, Metabolism and Activity (K.S. Brusik and W.J. Stec, eds.) pp. 149‐164. Elsevier Science Publishers, New York.
   Zarytova, V.F., Sergeyev, D.S., and Godovikova, T.S. 1993. Synthesis of bleomycin A5 oligonucleotide derivatives and site‐specific cleavage of the DNA target. Bioconjugate Chem. 4:189‐193.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序