基因型
互联网
在孟德尔的豌豆杂交实验揭示的遗传定律中,遗传因子的组合构成了基因型。例如CC、Cc和cc以及YYRR、YrRr和Yyrr等都是植株的花色、子叶颜色和豆粒形状的基因型,植株实际长出的花色、子叶颜色和豆粒形状则是表型。不同的基因型如CC和cc以及YYRR和yyrr可有不同的表型;不同的基因型如CC和Cc以及YyRR和YyRr也可有相同的表型。这里还可引进测交(test cross)的方法。这是用隐性基因纯合体作为杂交亲本之一,若杂种子代中也出现表现为隐性性状的个体,则表明另一杂交亲本是带有隐性基因的杂合体。例如,CC与“杂交,子代为Cc,表型为显性C的性状;可是Cc与“杂交时,子代就有两种类型,即Cc与cc,比例为1:1,有cc个体出现,表明杂交的另一亲本有隐性基因,其基因型为Cc。
同样,如果YYRR与yyrr杂交,子代只有YyRr一种类型,均表现出YR的显性性状。可是如果是YyRr与yyrr杂交,则会分离产生包括yyrr类型在内的子代。
在不同的环境条件下,相同的基因型也可以出现不同的表型。玉米叶片能否生成叶绿体是由基因控制的,基因型AA和Ad在光照的环境下会生成叶绿体,种子萌发长出绿色幼苗。可是,同样是AA和Ad基因型的玉米,如放在不见光的暗处,对于A成了显性。
显性遗传时,杂合体(heterozygote)Aa的表型一般是同纯合体(homozygote)AA的表型相同。可是也存在不完全显性(incomplete dominance)的现象。例如,
家蚕(Bombyxmori)皮肤斑纹的种类很多,黑缟蚕身上每个环节都有一条黑色带,只是节间膜部分是白色;白蚕的多个环节都是白色。当把黑缟蚕和白蚕杂交后,F1全是淡黑缟,它们的色斑介于两亲之间,稍稍偏向黑缟斑。 F 1 的雌雄个体交配,得到的F 2 中,1/4个体是黑缟斑,2/4个体是淡黑缟,1/4个体是白蚕。如果黑缟蚕的基因型是p S p S ,白蚕的基因型为PP,则F 1 的基因型是P s P,由于p S 对户是不完全显性,所以F 1 个体的表型是淡黑缟,F 2 中,1/4个体是P s P s ,表型为黑缟斑;2/4个体是P s P,表型为淡黑缟;1/4个体是PP,表型为白蚕。在这里,又一次验证了分离法则和完整性法则。F 1 的表型是淡黑缟,介于两亲之间,但这并非是pS和户基因互相混合或沾染,只是显性不完全而已,否则在F 2 中又怎么会产生黑缟蚕(PsPs)和白蚕(PP)呢?这正是p S 基因和户基因分离和组合的结果。
在显隐性的关系中还有一种镶嵌显性(mosaicdominance)现象。这是指控制一对相对性状的基因,也就是一对等位基因(allele)可以各自在身体的不同部分分别表现出显性。例如,异色瓢虫(Harmoniaaxyridis)的鞘翅上有很多色斑变异。
鞘翅的底色为黄色,黑缘型(S Au S Au )鞘翅的前缘呈黑色,均色型(S e S e )鞘翅的后缘呈黑色。当S Au S Au 型瓢虫与S e S e 型瓢虫杂交后,F 1 (S Au S e )既不是黑缘型,也不是均色型,而是出现一种新的色斑图案,两个亲本的鞘翅上的黑色斑纹叠加在一起,黄色底色被黑色斑纹所掩盖,黑色对黄色呈显性,两个亲本的黑色斑纹发生镶嵌叠合。这种镶嵌显性遗传现象是我国遗传学家谈家桢于1946年发现的。
显隐性关系的另一种例外是共显性。这是指一对等位基因的两个成员在杂合个体中都呈显性,都显现出来。前面提到的正常血红蛋白基因Hb a )和镰形细胞贫血症的血红蛋白基因(Hb s ),在Hb A Hb s 的杂合个体中表现为共显性,分别产生了正常血红蛋白分子和镰形细胞贫血症血红蛋白分子。只不过其宏观性状是正常个体,好似存在显隐性关系。共显性最好的例子就是红细胞血型。红细胞膜上的抗原统称为不同的血型(bloodgroup)o最常见的ABO血型是当红细胞上的抗原基因型为I A I A 和I A i时为A型血,为I B I B 和I B i时为B型血,为“时为O型血。
可见I A 对i和I B 对i都呈显性。可是当基因型为I A I B 时,则表型为AB型血型。这说明基因户和户都表现为显性,即为共显性。
从人的ABO血型这个例子还可引出复等位基因(multipie alleles)这个概念。控制ABO血型的基因有3个,即基因IA 、基因IB 和基因i。 可是,一个个体只有一对等位基因,不可能同时有两个以上等位基因。因此,复等位基因是指群体中的不同个体,在同一基因座(locus )上有两种以上等位基因。