丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

什么是放射化学分析法

互联网

2004

      早在1913年,德国的G・赫维西和E・A・潘内特(Paneth)就将镭D(210Pb)作为分析手段用于测定铅盐的溶解度。那时可得到的放射性元素的数目极其有限,因而严重妨碍了这门技术的进一步应用。目前已有许多同位素可供应用。因此在分析化学中利用同位素作为示踪物已经很广泛了。这方面的应用分为三类:同位素稀释分析,活化分析和同位素衍生物分析,人们在应用中既使用了稳定同位素,又使用了放射性同位素,后者因无需用质谱仪就可进行测定,故人们更乐于使用。
      经典分析方法传统上是用来分离高纯度、高产率的被探索物质的,然后通过称重、滴定和测定一个适当的物理性质就可完成整个测定工作。但同时要求高产率和高纯度自古以来就是定量分析的绊脚石。假如不强调产率,要获得一种高纯度的物质一般并不太困难。然而反过来,产率高但纯度很差的物质却通常易于得到,同位素示踪技术使得有可能重点对准某一目标而无需过多地注意其它目标。这一事实的优点是示踪同位素的化学性质与样品中的同种元素相同,但因其有放射性,故易于检测。
      赫维西(Hevesy,György,1885―1966),匈牙利―丹麦―瑞典化学家。生于布达佩斯,在匈牙利和德国求学,获弗赖堡大学博士学位,然后旅居英国与卢瑟福一起工作。赫维西的两项重大贡献都在1923年做成的,其中戏剧性不太大的工作至为重要。
      1923年赫维西与D・科斯特(DirkCoster)合作发现了新元素铪,同年他第一次用含有放射性212Pb的溶液来浇灌植物,这样他就能够很详细地观察铅在植物中的吸收和分布情况。这种技术的缺点是铅对大多数生物体系的高度毒性,以至于在开始使用放射示踪原子时,并未引起人们的重视。但是当约里奥夫妇于1934年发现人工放射性之后,赫维西的放射性示踪法才发展成为研究生命体系最广泛使用和最有力的技术之一。由于他在发展放射性示踪原子方面的成就,赫维西被授予1943年诺贝尔化学奖。
 
(一)同位素稀释分析
      1932―1933年赫维西和霍比(R.Hobbie)又首先提出同位素稀释分析法。同位素稀释分析特别适用于某些样品,这些样品所含的被探索物质的浓度很高,足以进行化学测定,不过由于某些干扰物质的存在,使得高产率的分离变得困难了。这种分析先将一定量的示踪同位素以一种适当的化合物形式加到样品中,对样品进行操作使被探索物质以高纯度的可测形式复原出来。然后对这个被探索物质的产物进行化学测定和计算。由此所得的量与所加的全部示踪物的量进行比较,分析化学家就可算出产物的化学产率。这样复原产物的量就可看作是原来样品中的总量。即使被探索物质在操作中会损失百分之九十,精密分析仍可进行――这真是粗心化学家所渴望祈求的事情!这种技术已有效地用在不能进行定量分离的有机混合物的分析方面,比如,维生素、抗生素、杀虫剂、除草剂和甾族化合物的分析中。
 
(二)活化分析
 
      活化分析常用于下列场合的分析,在这些场合中待测元素的浓度很低,实际上不可能以高纯度的可测形式进行化学分离。样品用反应器中的热中子照射,随后就可对活化同位素进行计数。此法既可用于定性分析,也可用于定量分析。因为通过鉴定半衰期和能量就可检测所含的特定同位素。由于中子照射一般会激活样品中的不只一种元素,所以通常需要先把待分析元素分离出来。这种分离可通过反向同位素稀释进行,其中加入一种未活化的含待测元素的适当化合物,随后进行操作使该元素在不掺其它活化元素的情况下复原出来。复原不必是定量的,因为所加元素的量与复原的量之差等于被活化的复原同位素的量。活化分析已被用于测定海水的含砷量(2毫克/升),半导体和生物中的含砷量;分析陨石中的含金、镓、钯和铼的含量(0.1ppm~0.01ppm);测定高纯物质中的杂质;测定锆中的含铪量,稀土混合物中的稀土元素(用普通化学方法很困难)和生物中的痕量元素(比如,关节炎组织中的金)。大约三分之二的元素只要有一微克或更少一点就可以进行测定。有几种元素低于10-4微克的量也可以进行测定。
 
(三)同位素衍生物分析
 
      典型的有机化合物不适于用活化分析,因为碳、氢、氮和氧所产生的放射性同位素半衰期太短,不能进行实际分析。而含硫、卤素或磷的分子在活化中会发生变化,因而也不适于采用这种分析。在这种情况下,同位素衍生物分析有时就适用了。使用一种示踪试剂把探索物转变成一种合适的衍生物。然后除去过量的试剂,接着加入作为载体的一种稳定衍生物,对此样品进行操作使这种衍生物以纯的形式复原出来。此操作法经凯斯顿、安登弗伦德和他们的同事已非常有效地把这种操作方法用于分析蛋白质水解产物方面。通过制备对碘苯磺酰衍生物,他们还成功地测定了毫克量的12种氨基酸样品,其中某些酸是微克量的。

 

(四)同位素用于测定年代
      用放射性方法研究矿物的寿命是1907年博尔特伍德提出的。他确信,放射性岩石的寿命可以用铀的半衰期和所积累的氦的数量估算。当认识到铀-238蜕变的最终产物是铅-206时,他又提出了一种改进的方法。最古老岩石的寿命已经发现是4.5×109年左右。
      由于认识到大气中存在有C-14,从而过去五万年内生长的含碳物的寿命就可推测了,1937年,A・V・格罗赛提出,放射性同位素可在宇宙射线与原子的碰撞过程中产生。1946年,芝加哥的W・F・利比证实,生物含有恒定的少量C-14,这是宇宙射线的中子与大气氮碰撞发生的一种(n.p)反应所致。由于C-14的半衰期为5600年,因而有足够的时间使它氧化成二氧化碳,并通过光合作用形成生物体。利比及其同事们表明,C-14的含量在活的动物和植物中是恒定的,不过在动植物死亡后含量要随寿命成正比地减少。通过把考古学所研究的放射性碳的数据与其它方法得出的数据进行比较从而肯定了这种技术的可靠性。
      美国化学家利比(Libbly,Willard Frank,1908―1980),芝加哥大学核研究所的化学教授,其主要贡献在于大大改进了测定年代的技术。1947年利比和他的学生在芝加哥大学核研究所利用高灵敏的盖革计数器研究放射性碳断代技术。他以已知年代的物品如埃及古墓中的木头为对象对这种方法进行了试验,试验证明对于过去5000年内的测定是可靠的,由此推断在放射性碳能够测定的约5万年内,这种技术也是精确的,后来经过改进能测定的期限提高到7万年左右。放射性断代技术证明了它对地球科学、考古学和人类学有巨大价值。由于此项发现,利比被授予1960年诺贝尔化学奖。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序