大肠杆菌基因型及遗传符号说明系列一
互联网
实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp(基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。
利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型 (Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。
分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。
大肠杆菌基因型的表示方法(Demerec, et, al. 1966)
一、一般规则:
1、根据基因产物或其作用产物的英文名称的第一个字母缩写成 3个小写斜体字母来表示。例如:DNA Adenine Methylase→dam。
2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在 3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。
3、突变位点应通过在突变基因符号后加不同数字表示。如 supE44(sup基因座E的44位突变)。如果不知道几个等位基因中哪一 /几个发生了功能性突变,则用连字符“ -”代替大写字母,如 trp-31。
4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。
5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以 F因子为例,F-:F因子缺失; F+:自主性 F因子,不携带任何遗传可识别染色体片段; F':携带有遗传可识别细菌染色体片段的自主性 F因子;Hfr:整合到染色体上的 F因子( high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或 ”/“等以区别。例如:/F' [traD36、proAB、lac I q、lacZ. M15]
6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如: lac-proAB基因缺失时它的基因型表示为 (lac-proAB)。
7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示: Streptomycin抗性→Str +或 Str r,Ampicillin敏感性→ Amp-。(第一个字母要大写 ,“+”或“r”表示有抗性 ,“-”表示无抗性或敏感)。
8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中 S20代表特异性识别蛋白发生变异,()中的 rB-、mB-表示由于 S20的变异而导致 B株来源的 hsdR和 hsdM的功能缺失。
9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如, UvrA、 UvrB。
三、主要的基因型说明
1、基因重组相关的基因型
recA (Recombination)
功能:recA基因表达 ATP依赖型 DNA重组酶,它在λ-噬菌体与基因组 DNA的溶原重组时起作用,同时具有对 DNA放射性损伤的修复功能。由 recA基因的变异所产生的基因型使同源或异源 DNA的重组不能进行,保持插入 DNA的稳定性,对 DNA的转化有利。一个菌株的基因型如果是 recA,则说明此菌株的表现型是重组缺陷的。
recB (Recombination)
功能:recB基因表达 ATP依赖型 DNase和核酸外切酶V的一个亚基,对recA的DNA重组酶起辅助和促进作用。DNase催化双链DNA的解旋和解链,核酸外切酶V催化单链DNA的裂解,在DNA的重组和损伤修复中发挥重要作用。recB基因的变异导致其DNA重组和修复功能丧失,保证了外源DNA的稳定,有利于DNA转化。
recC (Recombination)
功能:recC基因表达四种酶,即核酸外切酶V,ATP依赖型的核酸内切酶,解旋酶及ATP酶,它们和recA, recB所表达的酶相互协调作用,在DNA的重组及放射性损伤的修复中发挥作用。recC基因的变异导致DNA重组功能缺失,保证外源DNA的稳定性。
2、甲基化相关的基因型
dam (DNA adenine methylase)
功能:dam基因表达DNA腺嘌呤甲基化酶,它能催化特异序列GATC中A的甲基化,保证DNA免受限制性核酸内切酶Mbo I的切断,同时在 DNA复制时也起一定的辅助作用。dam基因的变异导致腺嘌呤(A)甲基化酶活性的缺失,使腺嘌呤(A)不被甲基化,易于获得非甲基化质粒。
dcm (DNA cytosine methylase)
功能:dcm基因表达DNA胞嘧啶甲基化酶,它能特异性识别DNA双链上的CCWGG序列,并使第二个C甲基化,即CmCWGG,避免 DNA受到相关限制酶的切断。dcm基因的导致胞嘧啶甲基化酶活性缺失,使外源DNA上的C不被甲基化,易于获得非甲基化质粒。
mcrA (Modified cytosine restriction protein a)
功能:mcrA基因表达大肠杆菌防御体系中起重要作用的mcrA酶,这种酶能特异性地作用于外来DNA上的被甲基化的胞嘧啶序列,即 C5mCGG特异序列,使之分解,对大肠杆菌本身起保护作用。mcrA基因的变异,导致上述功能缺失,对外来DNA中被甲基化的胞嘧啶特异序(C5mCGG)失去作用,有利于限制酶及甲基化酶的克隆体的稳定。
mcrB, C (Methyl cytosine-specific restriction)
功能:mcrB, C基因表达两种特异性蛋白,即mcrB蛋白和 mcrC蛋白,它们在大肠杆菌的防御系统中起重要作用。一般情况下,只有这两种蛋白同时存在时才表现出活性, mcrC具有识别和调节功能,它能特异性的结合到外源 DNA上被甲基化的胞嘧啶(C)的特异序列 G5mC上,然后由 mcrB蛋白切断(mcrB蛋白是特异性切断外来 DNA中 G5mC序列的限制性核酸内切酶),防御外来 DNA的侵入。mcrB, C基因的变异,使上述的对外来 DNA的防御作用缺失,对质粒的转化有利。
mrr (Methylation requiring restriction)
功能:mrr基因是大肠杆菌细胞防御系统中重要的基因之一,它能严格限制被甲基化的外源DNA的介入。另外,它对限制酶AccⅠ,CviR Ⅰ,Hinf IⅠ(Hha Ⅱ),Nla Ⅱ,Pst Ⅰ以及 N6-腺嘌呤甲基化酶和C5-胞嘧啶甲基化酶活性有明显的抑制作用。mrr欠损株(基因型)可用于含有N6-mA和C5-mC的DNA的转化。另外,含有此基因型的菌株也可用于限制酶和甲基化酶的克隆体。
hsdM (Host specificitive defective)
Map position: 99 min
功能:hsdM基因所表达的DNA甲基化酶是 I型限制酶复合体(具有对 DNA切断和修补的双重功能)的一部分,它能使DNA双链上的AA (双腺嘌呤) 甲基化,保护宿主DNA不被分解。hsdM的变异使细胞内的DNA不被甲基化,易于获得非甲基化质粒。
3、点突变相关的基因型
mutS (Mutator)
功能:mutS基因表达的蛋白具有识别DNA上错配序列的功能,并能修复其错配序列(GC→AT),防止基因突变。mutS基因的变异导致DNA的错配序列不能得到修复,容易发生基因突变,这对于利用点突变进行基因改造是有利的。
mutT(Mutator)
功能:野生大肠杆菌在进行DNA复制时,细胞中的8-OXO-dGTP插入模板DNA中的DA位点的效率几乎与插入DC位点的效率相同,导致 A-T转换成 G-C,使DNA产生变异。而mutT蛋白就是特异性地降解8-OXO-dGTP成为单磷酸盐(8-OXO-dGMP),这种单磷酸盐状态的G(鸟嘌呤) 不能作为底物进行 DNA合成,从而防止了上述的基因突变。 mutT基因的变异使细胞中8-OXO-dGTP浓度增高,A→C的突变几率增大,有利于利用点突变进行基因改造。
dut (dUTPase)
功能:dut基因表达脱氧尿嘧啶三磷酸核苷酸水解酶(dUTPase),它能水解dUTP成为dUMP,使细胞体内dUTP的浓度维持在较低的水平,尿嘧啶(U)就不易掺入到DNA中,避免了基因发生 A→U的突变。dut基因发生突变使dUTPase活性缺失,导致dUTP浓度升高,碱基U(尿嘧啶)极易掺入到DNA中,使其发生A→U的基因突变,有利于利用点突变进行基因改造。
ung (Uracil DNA glycosylase)
功能:ung基因表达尿嘧啶 -N-糖苷酶,这种酶能特异性识别DNA单链或双链上发生突变的尿嘧啶残基,并从DNA上水解去除尿嘧啶残基,防止 DNA发生突变。ung基因的变异导致上述功能缺失,有利用点突变。
uvrB (Ultraviolet)
功能:uvrB基因表达核酸外切酶中的b亚基,这种核酸外切酶具有DNA的切补功能,对紫外线损伤的DNA有修补作用。uvrB基因的变异使细胞中核酸外切酶切除变异碱基的活性缺失,有利于点突变。
4、核酸内切酶相关的基因型
hsdR (Host specificity defective)
功能:hsdR基因表达 I型限制酶EcoK (K12株) 或 EcoB (B株),在大肠杆菌细胞中起到一种”抗体“的作用,对外来的各种 DNA有严格的限制。HsdR基因的变异导致菌株细胞内的 I型限制酶 EcoK或 EcoB活性缺失,这对于外来基因的导入及质粒转化是有利的。
hsdS (Host specificitive defective)
功能:hsdS所表达的特异性蛋白是 I型限制酶EcoK或EcoB复合体中的一部分,它专门负责hsdR酶和hsdM酶对DNA序列的特异识别。hsdS基因的变异使hsdR和hsdM不能正确识别其作用的特异DNA序列,可以保持插入DNA的稳定性。
endA (Endonuclease)
功能:endA基因表达非特异性核酸内切酶Ⅰ,它能使所有DNA双链解开,在DNA的复制和重组中起重要作用。endA基因的变异将使插入的外源 DNA更加稳定,提取的质粒纯度更高。
5、停止密码子相关的基因型
supE (Suppressor)
功能:supE基因表达的阻遏蛋白与停止密码子UAG结合,使蛋白质合成停止。supE基因发生变异时,不能表达正常的阻遏蛋白,即使遇到停止密码子 UAG,蛋白质合成仍能继续,并使 UAG作为一个密码子来编码谷氨酰胺(Glutamine),从而使发生了琥珀突变(AAG→UAG)的基因对蛋白质表达得以延续,因此称 supE为琥珀突变抑制因子。
supF (Suppressor)
功能:supF基因表达的阻遏蛋白与停止密码子UAG结合,使蛋白质合成停止。supF基因变异时,不能表达正常的阻遏蛋白,即使遇到停止密码子 UAG,蛋白质合成仍能继续,并使 UAG作为一个密码子编码酪氨酸 (Tyrosine)。