PCR实验技术总结
互联网
PCR技术简史
一、PCR的最早设想
核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。
二、PCR的实现
1985年美国PE-Cetus公司人类遗传研究室的Mullis 等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给DNA的体外合成提供以致一种合适的条件---摸板DNA ,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。
三、PCR的改进与完善
Mullis最初使用的DNA聚合酶是大肠杆菌DNA 聚合酶 I 的Klenow片段,其缺点是:①Klenow酶不耐高温, 90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得PCR技术在一段时间内没能引起生物医学界的足够重视。
1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。
1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。
此酶具有以下特点:
①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的60%,在95℃下反应2h后其残留活性是原来的40%。
②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。
③大大提高了扩增片段特异性和扩增效率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。
PCR技术的基本原理
类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:
(一)模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;
(二)模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;
(三)引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。(Plateau)。 到达平台期所需循环次数取决于样品中模板的拷贝。
PCR的反应动力学
PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期, 即出现“停滞效应” 这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情况下,平台期的到来是不可避免的。
PCR反应体系与反应条件
一、标准的PCR反应体系:
10×扩增缓冲液10ul
4种dNTP混合物各200umol/L
引物各10~100pmol
模板DNA0.1~2ug
Taq DNA聚合酶2.5u
Mg2+1.5mmol/L
加双或三蒸水至100ul
二、PCR反应五要素
参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+
(一)引物
引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列, 就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。
设计引物应遵循以下原则:
1、引物长度: 15-30bp,常用为20bp左右。
2、引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。
3、引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。
4、避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。
5、引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。
6、引物中有或能加上合适的酶切位点, 被扩增的靶序列最好有适宜的酶切位点, 这对酶切分析或分子克隆很有好处。
7、引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。
(二)酶及其浓度
目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2。5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。
(三)dNTP的质量与浓度
dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。
(四)模板(靶基因)核酸
模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀; 蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。
(五)Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。
三、PCR反应条件的选择
PCR反应条件为温度、时间和循环次数。
(一)温度与时间的设置
基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。
1、变性温度与时间
变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。
2、退火(复性)温度与时间
退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:
Tm值(解链温度)=4(G+C)+2(A+T)
复性温度=Tm值-(5~10℃)
在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。
3、延伸温度与时间
Taq DNA聚合酶的生物学活性:
70~80℃ 150核苷酸/S/酶分子
70℃ 60核苷酸/S/酶分子
55℃ 24核苷酸/S/酶分子
高于90℃时, DNA合成几乎不能进行。
PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。
(二)循环次数
循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。
PCR反应特点
一、特异性强
PCR反应的特异性决定因素为:
(一)引物与模板DNA特异正确的结合;
(二)碱基配对原则;
(三)Taq DNA聚合酶合成反应的忠实性;
(四)靶基因的特异性与保守性。
其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能
保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。
二、灵敏度高
PCR产物的生成量是以指数方式增加的,能将皮克(pg=10- 12)量级的起始待测模板扩增到微克(ug=-6)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。
三、简便、快速
PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。
四、对标本的纯度要求低
不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。
PCR扩增产物
可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中, 以两条互补的DNA为模板,引物是从3'端开始延伸, 其5'端是固定的,3' 端则没有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结时, 由于新链模板的5'端序列是固定的, 这就等于这次延伸的片段3'端被固定了止点, 保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的“短产物片段”。不难看出“短产物片段”是按指数倍数增加, 而“长产物片段”则以算术倍数增加, 几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。
PCR扩增产物的分析
PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。
一、凝胶电泳分析
PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。
(一)琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶, 供检测用。
(二)聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。
二、酶切分析: 根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。
三、分子杂交: 分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。
(一)Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。
(二)斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。
四、核酸序列分析: 是检测PCR产物特异性的最可靠方法。
PCR产物克隆方法
一、平端连接
通常情况下,PCR产物可直接与平端载体DNA进行连接,但其连接效率效低。因为TaqDNA聚合酶具有非模板依赖性末端转移酶活性,能在两6条DNA链的3'末端加上一个多余的碱基,使合成的PCR产物成为3'突出一个碱基的DNA分子。这种DNA分子的连接效率很低。由于PCR产物的效率通过较高,。在采用大量T4DNA连接酶并配以5-10u T4 RNA连接酶时,可显著提高其连接效率。对于较短PCR产物,用PUS19的HincⅡ位点进行克隆,以X-gal和IPTG筛选,常可得到足量重组子。另一种提高克隆效率的途径是先用Klenow大片段或T4DNA聚合酶消去3'末端突出碱基将PCR产物变成平端DNA,然后再用平端连接法克隆PCR产物。
二、粘端连接
(一)引物中设计入限制酶位点
由于PCR引物的5'末端可以增加一些非互补碱基,因此可以在两引物的5'末端设计单限制酶或双限制酶切位点。这样得到的PCR产物用限制酶消化产生粘性末端,即可与有互补粘端的载体DNA重组。这种克隆方法效率较高,且当两引物中设计不同酶切位点时,可有效地定向克隆PCR产物。其缺点是需要加长PCR引物,除限制酶识别序列外,还需要在其5'端多合成3-4个碱基以利于限制性内切酶与PCR产物末端的稳定结合。即使如此,其酶切效率也不够高。其中尤以NotI、XhoI和XbaI等较为难切。采用突变PCR方法可克服上述缺点。该方法是通过在两PCR引物序列中改变1至数个核苷酸创造出一个限制性内切酶位点。鉴于PCR引物的3'末端序列的互补性是PCR成功的关键,在PCR引物的中部或近5'端改变1个或几个碱基对PCR扩增效果影响不大。这种方法不需要增加PCR引物的长度,而且酶切效果优于5'加端法。对于特定DNA片段的克隆,此方法较为经济、实用。但对于基因诊断PCR产物的克隆,似乎5'加端法更为适宜。
(二)T4DNA聚合回切产生粘端
如PCR两引物的5'末端是A或T,则可在其5'端分别加上CG和CCGG。用此二引物扩增的PCR产物在dATP和dTTP存在的情况下,用T4DNA聚合酶进行处理,则T4DNA聚合酶因具有3'→5'外切酶活性而消去3'末端的G和C,产生AccI和XmaI粘性末端。此DNA片段直接与用AccI和XmaI切开的载体进行连接。这种方法只需在PCR引物的5'端加2-4个碱基,但其可选择的限制酶类有限。
三、T-vector法
TaqDNA聚合酶能在平端双链DNA的3'末端加一个碱基,所加碱基几乎全是腺苷。据此,Marchuk等人采用3'端突出一个胸苷的质粒DNA来克隆PCR产物,其克隆效率比平端的连接至少高出100倍。他们用EcoRV将pBluescript切成平端,然后在2mmol/LdTTP存在下,用TaqDNA聚合酶催化pBluescript的两个3'末端各加一处胸苷。因为在4种dNTP都存在时,Taq聚合酶选择性参入dATP,而当仅一种dNTP存在时,它只能参入该种碱基。因此,在只加入ddTTP时,用TaqDNA聚合酶可使平端载体DNA转变成3'末端突出一个胸苷的T尾载体,称为T-vector。用这种T-vectorsk可以较有效地直接克隆PCR产物。Hotton等人也报道了另一种制备T-vector的方法。他们使用脱氧核苷酸末端转移酶在切成平端的载体DNA的3'末端加上一个胸苷。由于末端转移酶可以催化多个碱基(ddTTP)作为底物,使平端载体DNA分子的两个3'末端各加上一个T。用这种方法制备的T-vector的不同之处在于前者3'末端不能与待克隆PCR产物的5'末端连接,仅5'末端可与PCR产物的3'末端形成磷酸二脂键。
四、共环消解法
最近,Jung等人报道了一种有效的PCR产物克隆方法。用磷酸化的PCR引物扩增得到的PCR产物,先用T4DNA连接酶催化连接反应,使5'端带有限制酶切位点的扩增DNA片段连接成共环结构。然后再用相应的限制酶进行消化,产生粘端DNA片段。对于对称性限制酶位点,只需在引蛾的5'末端加上一关识别序列,因为在串接成共环后能恢复限制酶切位点难于切开的缺点,且可用于双限制酶切位点的设计,只不过有PCR产物共环化后,仅约1/4的限制酶切点得以恢复。故此法较适用于单限制酶位点的克隆。
五、无连接酶亚克隆法
无连接酶克隆法(ligase-free subcloning,LFS)是利用引物5'末端附加碱基修饰法,修饰碱基不是酶切位点,而是与某一质粒两端分别互补的碱基。两引物的3'端约20-25个核苷酸分别与待扩增DNA两翼互补,5'端各有约24个核苷酸分别与线性化质粒的3'端相同的附加序列。由于线性化质粒的3'端序列各不相同,PCR片段可以通过选择各引物的合适5'附加序列与引物3'端定向杂交。
由此物a和b产生的两端有附加序列的PCR产物与未反应引物分离后,分别加入两只含有线性化质粒的反应管中进行第二次PCR。第1管中用引物a和c,引物a即为第一PCR扩增的上游引物a,引物c为下游引物,与紧邻5'端附加序列内测的质粒(+)链互补。同样,第2管的引物为b和d,引物b与第一次PCR扩增的下游引物b相同,引物d为上游引物,与紧邻5'附加序列内侧的质粒(-)链互补。
第二次PCR的第一循环中,PCR产物与质粒均变性与复性。除自身复性产物(这种复性产物不被扩增)外,PCR产物与质粒可通过各自3'端互补序列杂交成部分异源双链,延伸时,重叠的3'端互为此物沿各自互补链延伸,结果可产生PCR片段与线性质粒的"连接"。然后两管中PCR扩增各进行15-20个循环。这便可产生大量一端管1)或另一端连接有PCR插入片段的质粒。 第二次PCR后将第1管与第2管反应液混合,用碱变性双链,中和后稀释变性的DNA。反应管中的单链DNA可以复性或几种不同的产物,除各自本身复性产物外,管1产物ssDNA与管2中ssDNA可形成部分异源双链DNA,并各自有一较长的5'或3'悬端,这种长的5'或3'悬端相互互补,在低DNA浓度时可复性产生环化DNA。
尽管这种环化的DNA有两个缺口,但它们可以直接用来转化受体大肠直杆菌。一旦进入体内,两个缺口便共价连接,修复的质粒即可复制,下面以从λ噬菌体DNA中扩增-500bp片段,并克隆入pGem4Z载体中为例说明LFS法。
这种方法同样适于复杂基因组中基因片段的克隆。需注意的是第一次PCR时两引物的5'附加序列不应太短以免影响第二次PCR时异源双链的形成,以24个核苷酸较为合适。扩增时若形成,引物二聚体,一定要去除,否则会严重影响转化率。用LFS法已成功地克隆了长达1.7kb的基因片段。这种方法的优点是:①可用于常规方法无法进行亚克隆的片段;②适于任何PCR产物和任何质粒;③可亚克隆特殊目的(如含点突变、缺失或插入等)片段;④在某些情况下,对已构建了启动子或增强子等序列的载体,可使待表达片段插入定向合适位置;⑤较快,可在1d内完成,较常规方法可靠,不需DNA连接酶。
DNA克隆是分子生物学的重要内容。特定基因的克隆常因两端缺乏合适限制酶切点而受因,cDNA的克隆通常也效率不高、筛选因难。采用PCR技术行DNA和cDNA的克隆,则可大大缩短克隆时间,比之全基因合成更为经济和方便,因而愈来愈受重视。用PCR方法进行传染性疾病和遗传性疾病的诊断常遇到产物的异性问题和分型问题,采用产物克隆和测序方法,比之寡核苷酸探针杂交方法更为准确。随着PCR技术的不断发展和推广,新的PCR产物的克隆方法也将不断出现。
PCR基础的检测工具的优缺点
首先,PCR反应是快速的。整个DNA提取,扩增和检测的过程通常少于6小时,如果反应利用嵌套的引物,过程可能长些。对于一些样本来说,比如来自粪便和表皮,就需要在DNA提取中增加步骤。这样就延长了整个检测的时间到14小时。
用购买的核苷酸提取工具就能缩短检测时间,机械进行提取,使PCR方案最优化或使用加快热循环技术。有了优化的样本,快速提取和光循环热循环,整个检测时间能缩短到2小时。但通常是6-8小时。
于培养基基础的方法2-5天的时间相比较,这是巨大的进展了。这也比一些需要有精确计算结果的培养基浓缩的抗体检测实验要快。当购买的实用抗体基础的检测工具比PCR基础的方法快时,大部分这样的化验只能用于非常有限的生物体上。
第二,PCR不需要培养。这是与PCR基础的检测的速度密切相关的。既然PCR是十分灵敏的(少到10 cfus的样本就能被检测),培养通常是没必要的。大多数最新的实用PCR检测工具需要有选择性的浓缩,特别是当样本包括大量的PCR抑制剂时。用核苷酸提取方法能够避免培养,核苷酸提取方法产生了PCR质量的DNA并且优化了PCR反应。如果在大量样本中检测少量的病原体或者病源有机体在PCR灵敏度的极限以下的情况下,将需要使用培养。在一般情况下,使用培养的情况是很少的,去除了培养的步骤,时间将被节省下来。
比节省时间更重要的是,去除了培养,那些难以或不能培养的生物体就可以进行检测。这些生物体包括某种病毒、真菌、厌氧性生物和支原体。
第三,PCR的花费合理。与培养或抗体基础的化验相比,PCR基础的诊断是十分经济的。
考虑到细菌的培养,有较昂贵的花费。大多数样本为了正确的鉴定需要培养和重复培养。这需要大量的手工时间(加上化验的花费),也增加了污染的危险。
作为比较,大多数抗体化验所需的手工时间很少但化验本身很昂贵。
PCR反应的成分(引物,酶,dNTPs和缓冲液)的花费比每次化验的花费少40%,而反应的时间包括核苷酸分离,通常在一小时以内。当然这依赖于样本、技术员和用于分离核苷酸的技术。既然PCR所用的时间少,它的花费也少。
但是,PCR需要热循环,UV来源和一些类型的图象捕获装置,因此PCR实验室的最初花费是很高的。
这里讨论另外一些在临床领域的PCR使用的基本原理
第一, PCR不是抗原基础的。
抗体基础的检测工具(ELISA和其他)不仅检测直接抗病原体的人类抗体,而且能检测病原体上的表面抗原。人类抗体检测工具因此需要免疫反应的存在,以及在正确检测抗原存在之前抗体浓度的测定。在新近感染的情况下,这种测试不能检测针对病原体的人类抗体,可能不能正确反映是否有感染。事实上,被感染的病人,没有充足的时间来提高用于检测的浓度。这是HIV抗体基础检测的通常的问题。由于相同的原因,这种类型的测试对检测无免疫应答患者的病原体存在困难。反过来讲,抗体基础的测试也会给出错误相反的结果。
然而抗体基础的检测最大的问题是它不能检测新的病原体亚型,由于表面抗原发生改变,而导致了错误的阴性结果。(PCR基础的检验也可能由于DNA的变化、突变而遇到相似的问题。但PCR基础的检验能够进行设计,使这些错误的阴性结果最小化。)
尽管有这些缺点,抗原基础的检测工具是十分重要的检测方法,在大多数情况下比PCR检测要迅速。
第二, 检验易按客户的要求设置,以适合特殊的需要
通过简单使用不同的特殊目标引物,工具能迅速设计,用于许多检测。
第三, PCR容易使用,是由时间证实的技术
通过使用有商业价值的核苷酸提取产物,用于病原体检测的样本能在少于十分钟的时间内被例行操作。一旦进行操作,样本被加入反应体系中,进入热循环。反应完成后,样本能被自动系统或凝胶电泳所分析。
少数的PCR检测将能完全自动化。仪器将进行所有操作,从样品的准备到分析结果。这样的系统将十分昂贵,可能只能适应制造商的平台。这对大多数临床实验室无吸引力,但当价格下降后,将最终使PCR诊断自动化。