丁香实验_LOGO
登录
提问
提问
我要登录
|免费注册
丁香通
点赞
收藏
wx-share
分享

三维细胞培养-无支架培养模式

互联网

10089

在细胞和组织培养领域,从上世纪70年代起二维(2D)培养科学家已经看到其局限性,并且更多地关注三维(3D)培养的优点,目前越来越多的研究从细胞培养的平面环境中转变到三维培养。

当前,虽然对基于细胞的效应研究和毒性测试中,制药工业如今最常用的依旧是2D方式,3D培养技术已在学术研究中被广泛应用。细胞增殖,分化和代谢等生理活动都严重受到微环境的影响。

当前细胞生物学研究大多还是在二维平面培养进行,这种平面培养、生长方式与机体内立体环境差别很大,导致细胞形态、分化、细胞与基质间的相互作用以及细胞与细胞间的相互作用与体内生理条件下细胞的行为存在明显差异。

2D和3D环境下培养的细胞相比较,诸多生理指标都显著不同,例如原代小鼠乳腺管腔上皮细胞(mammary luminal epithelial cells, MEC)在3D基底膜基质中增殖的时间明显长于2D培养环境;更有甚者,有时药物作用于2D培养的细胞呈现的效应与3D细胞相反。

3D培养可以设计模拟体内的生理环境,让细胞在生理行为上与机体实际的生理环境更接近。随着在生物相关性,通量,产出量等方面的改进,伴随3D培养成本的降低,3D培养在再生医学,基础研究和药物研发中的应用将越来越广泛,一场细胞由2D培养走向3D的变革正在发生。

3D细胞培养-无支架三维培养

当前市场上有多种类型的3D培养系统,根据产品是否为细胞提供支撑(支架)材料(scaffold)大体可分为两种类型:基于支架(scaffold)的培养体系和无scaffold的培养体系。今天来介绍一下无支架的三维培养体系。

没有供细胞粘附、生长和扩散的支撑结构,使培养基中的细胞聚集成为类似于组织的微组织球体(microtissue spheroids)。无scaffold的培养体系可通过悬滴(hanging drops)让细胞在重力的作用下通过自组装形成微球体。这种方法的优点是可以通过控制悬滴而精准的控制微组织球,使其具有高一致性,为后续研究提供好的微组织材料。而且通过悬滴法可以实现对不同细胞类型的共培养,保证共培养细胞间的信息交流。

无scaffold的培养悬滴培养体系的代表性厂家为InSphero,他们的96孔板设计可以通过手动操作,也支持自动化上样装置轻松实现微组织培养,在肿瘤研究和新型抗癌药物筛选等领域中被广泛选用。

下面对InSphero的悬滴培养技术做一简要介绍:

3D细胞培养板主要由GravityPlus板和GravityTRAP板组成

GravityPlus 板:采用细胞悬滴法(专利技术),使细胞形成球体状微组织(3D状态);将细胞悬液(一种细胞或多种细胞)添加到GravityPlus板中,2-4天,细胞在GravityPlus板中会形成微组织(微球状);

GravityTRAP 板:采用非粘附包被技术,使微组织在无依附、不解聚情况下培养数周,便于后续实验及检测。当微组织形成后,将其转移到GravityTRAP板中,可使微组织在无依附、不解聚情况下培养数周,便于后续实验及检测。

InSphero无介质支架(scaffold-free) 培养形成的3D微组织呈多细胞球状体,无论在形态学上,还是在功能上均与自然组织类似。适用于标准的生物化学检测和免疫染色等处理。以便捷的96孔板内3D培养模式提供,在多种临床前检测中被广泛应用。紧密的细胞间连接,与体内类似的基因表达谱、营养和氧梯度等使3D微组织成为体外细胞实验的理想模式。

如今,全球最大的前15家制药和护肤品企业均在使用InSphero的GravityPLUS™平台及3D微组织。

另一代表性厂家是为N3D Biosciences,下面对N3D Biosciences的磁力驱动3D细胞培养做一简要介绍:
美国n3D Biosciences,Inc 以磁化细胞培养技术为基础,研发出一系列磁力驱动3D细胞培养产品。

磁化细胞培养技术:以NanoShuttle(一种生物相容性磁性纳米颗粒)为中心,将其加入到细胞或培养基中磁化细胞,然后再使用磁力驱动器,就可以让细胞进入磁悬浮状态或将细胞打印(printing)成具有结构和生物性能的典型3D模型(环状或微球状)。

对于96孔板试剂盒来说,磁力驱动器有两种:Dot磁力驱动器和Ring磁力驱动器,根据培养的细胞类型和应用来选择:

其它无scaffold产品如: InfiniteBio公司SCIVAX 3D产品,其NanoCulture Plate (NCP)为合成聚合物(synthetic polymer)材料,具有超低粘附力的微板结构表面,细胞在此微结构上迁徙、相互粘附形成微球体。BioLevitator应用磁性微球载体,整合3D和微载体培养技术实现高密度3D细胞培养;microtissues的3D petri Dish通过琼脂界面进行3D培养等。

三维细胞培养的缺点与局限

三维细胞培养对药物研发和毒性测试意义重大,但当期也有一些问题尚待解决。总体上说,材料科学与生物学的结合使当前3D培养方式越来越多样化,用户的选择空间很大,可在比较中找到最适合自己的方法。众多的3D培养方法重点关注如何让3D体系更加接近人体实际环境,而对药物研发企业,他们除了模拟实际环境,还要求高效、自动化,使用成本大大降低。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序