提问
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

细胞培养基

丁香实验

4380

基础培养基

绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是 Eearle`s MEM 的混合物,其中含有 13 种必须氨基酸、8 种维生素。

而 Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如核苷酸)。MEM/F12 这两种培养基各取 1/2,形成神经生物学最通用的培养基。

Dulbecco`s改良培养基—— DMEM,现应用于快速生长的细胞,同MEM含有相同的营养成分,但浓度高出 2~4 倍。选择某种培养基,应仔细了解成分表,应知道大多数情形下培养基都有不足。

例如,有些培养基在氨基酸中包括有谷氨酸,而这种培养基虽广泛用于神经生物学领域,但它对某些对谷氨酸敏感的可能有细胞外毒性损伤的神经元而言,则并非最佳选择,特别是如果神经元生长在缺乏胶质的环境中时。F12 中含有硫酸亚铁,据报道也有神经毒效应。

在所有这些培养基中,谷氨酸比其他氨基酸有更高的浓度,这是因为它具有不稳定性以及在许多细胞培养中它常用作碳源。对于神经元的培养常常在基础培养基中增加葡萄糖的含量到 0.6%或者加入丙酮酸(若培养基中这两种物质缺乏时)。

MEM 与 F12 均要用 5% 的 CO2 来平衡,DMEM 含更高浓度的 NaCO3,要用 10% 的 CO2 来平衡,当然也可以在较低 CO2 浓度下使用。这些基础培养基的组成成分是建立在对不同细胞系生长的研究之上的,但通常在原代培养中使用也能有比较令人满意的结果。

原则上,HEPES 作为缓冲剂可用来代替碳酸氢盐,以解除需要高浓度 CO2 培养环境的限制。实际操作中并非如此简单。显然,溶解的 CO2 与碳酸氢盐对良好的细胞生长是重要的。

Leiboviz`s L15 培养基可用来在大气环境中令神经细胞生长,该培养基采用了与众不同的 BSS 作基础,它含有高浓度的氨基酸来提高缓冲能力,培养基中使用半乳糖作碳源,以阻止培养基中乳酸形成,少量溶解的 CO2 由丙酮酸代谢产生。

这一培养基的优点是明显的,特别是在保持较高 CO2 有困难时,例如在长时间的显微操作及生理学研究中。L15 培养基已用来成功的培养了外周神经元,但尚未在 CNS 神经元的发育研究中全面检测过。

血清

细胞在单纯的基础培养基中不能存活,在特殊类型的细胞培养中必须提供某些痕量营养物质及生长因子才能使细胞得以生长并维持生长状态。基础培养基常常要添加血清,血清终浓度多为 5~20%。特殊用途的血清来源须用经验确定,广泛应用的血清种类有马血清与胎牛血清。

胎牛血清中富含有丝分裂因子,常选其作增殖细胞用的血清,也用于细胞系和原代培养。而马血清常常用来作有丝分裂后的神经元培养。

然而,很多人也将胎牛血清用于神经元培养,也有人用马血清来培养胶质细胞。用大鼠进行神经元培养的某些研究者喜欢使用同型血清;人类的胎盘血清,亦曾用于神经组织的器官类型的培养,也用在一些特殊培养种类中。

血清的不同批号含有不同的成分,所以许多人发现,应该在使用前对血清进行测试。大多数试剂商提供样品,所满意的批号即可选用,这样可以一次得到足够一年用量的血清,血清在使用前通常在 56℃ 加热 30 分钟,这一过程称为灭活。

无血清培养基

1979 年神经细胞培养出现了一个重要进展,用化学添加剂即可维持神经细胞存活与生长而不需要在培养基中添加血清。其工作基础是用合适的激素、营养物和促贴壁的物质的组合置换培养基中的成分,最后找到了适合大多数细胞培养的试剂配方,该配方称为 N2,专门用于神经细胞培养,最早是用在 B104 大鼠神经母细胞瘤细胞系的培养。

它的基础培养基是 1:1 的 DMEM 与 H12 的混合液,添加了胰岛素、转铁蛋白、黄体酮、腐胺和硒。胰岛素和胰岛素样生长因子对于大多数类型细胞的存活和生长有重要作用,硒是谷胱甘肽产生的合作因子,可能有助于过氧化物和超氧化物的水解,有报道说还能防止细胞的光照损伤。随后的其他配方如N1N3则含有较低浓度的转铁蛋白。

未料到的是上述配方构成的培养基可以支持神经母细胞瘤细胞系快速增殖,随后又发展了能支持原代培养的各种神经元生长的培养基,这种培养基在许多实验室里已取代了有血清培养。在某些培养方案中,细胞直接进入无血清培养,这样的培养基可以消除来自血清的不均一性。

更为重要的是,它们可用来检测生长因子以及其他促进神经元存活或生长的因子,或者用来检测那些可保护神经元免遭环境毒物损伤的制剂。专用于神经元的培养基在某些培养环境中还可以减低非神经元细胞的增殖,故可使神经元纯化。

血清中含有的组分,例如血清蛋白,可作为代谢毒物清除剂使用并能聚集于培养基中。当缺乏这些成分时,如神经元在无血清培养基中生长时,特别容易为过氧化物及自由基伤害,这已被许多研究者注意到了。

过氧化物酶以及超氧化物歧化酶可阻止培养基中过氧化物和超氧化物的累积,有报道讲可以促进低密度培养细胞的存活。有学者发现细胞存活可为氧分压的下降而促进。因而,无血清培养基的配方常含有抗氧化剂的试剂。

例如,维生素E和丙酮酸,可作为过氧化物清除剂使用。上述这些影响在高密度培养时变小,特别是神经元与胶质共培养时,它们可以吸收和代谢神经元毒性物质如谷氨酸。

应该注意,尽管无血清培养基是有化学限定性的,但在培养过程中它仍有变动,培养起始时可能有些物质缺乏,而后细胞的产物可能积累,从而使培养基的成分改变。

这其实是有另一方面的好处,即条件培养基(已培养过细胞的培养基)的形成,条件培养基常常用来增加神经元和胶质细胞的发育。

生长因子绝大多数哺乳类胚胎神经元有严格的营养要求,若不能提供适宜的生长因子或合适的因子组分,将会使绝大多数神经元在体外培养的数天中死亡。解决这一问题有两条思路,一是让培养细胞提供自己的营养因子,二是在培养基中加入纯的生长因子。

如果细胞混合物能在高密度时生长,所需的生长因子便会积累到可观的数值,尤其当培养基很少变化时。若某种细胞混合物生长时有很少的营养需求,可保持培养基在一段时间里不作任何变动,以使营养(生长)因子积累,而最后促使所需要的细胞类型能够生长。

但是,这种对营养(生长)因子自身倚赖性亦有弊端,因为通常在混合细胞群体中细胞很难有同比例增殖,某些细胞会因生长条件的贫乏而受限制。另外,这种方法只能进行相当高密度的细胞培养。因为培养基的条件在细胞的较低密度时变的不够有效。

不过某些时候纯化神经元群体的低密度培养可用条件培养基(经过了高密度培养)进行,或在胶质上生长的神经元所用过的培养基来支持。

满足神经元营养需求的第二条途径是向培养基中加入生长因子。通常用于组培的通用适宜因子是神经生长因子 NGF。不过,只有少数对这种蛋白质有反应的细胞类型的细胞才能生长。

培养基的保存

1、液体培养基贮存于 4 oC 冰箱,避免光照,实验进行前放在 37 oC 水槽中温热。

2、液体培养基(加血清) 存放期为六个月,期间 glutamine 可能会分解,若细胞生长不佳,可以再添加适量glutamine。

3、粉末培养基配制(以1 升为例):

3.1. 细胞培养基 通常须添加10 % 血清,因此粉末培养基之配制体积为900 ml,pH 为 7.2 - 7.4。NaHCO3 为另外添加,若将NaHCO3 粉末直接加入液体培养基中会造成 pH 之误差,或局部过碱。

因此粉末培养基及 NaHCO3 粉末应分别溶解后才混合,然后用 CO2 气体调整 pH,而非用强酸(HCl)或强碱(NaOH),因为氯离子对细胞生长可能有影响,且贮存时培养基的 pH 易发生改变。

材料
纯水(milli-Q 水或二次至三次蒸馏水,水品质非常重要)、粉末培养基、NaHCO3 (Sigma S-4019)、电磁搅拌器、无菌血清瓶、 0.1 或0.2 mm 无菌过滤膜、 pH meter、 真空帮浦、 CO2 气体

步骤:
1、取粉末培养基溶于 700 ml milli-Q 水中,搅拌使其溶解。

2、 称取适量之 NaHCO3 粉末(数量依培养基种类而异,表一)溶于 200ml milli-Q 水中,搅拌使其溶解,然后通入 CO2 气体至饱和,约 3-5 分钟。

3、 将溶解且含饱和 CO2 之 NaHCO3 溶液加入溶解之液体培养基中混合。混后溶液之 pH 应为 7.2-7.4,除非 pH 值偏差太大,否则不需用酸碱再调整之。若为太碱,可再通入 CO2 气体调整pH。培养基以真空帮浦通过过滤膜时,pH 会升高 0.1-0.2。

4、 以 0.1 或 0.2 mm 无菌过滤膜过滤灭菌,同时分装至无菌容器中,标示培养基种类、日期、瓶号等,贮存于 4 oC。(血清亦可加入培养基中一起过滤)

5、 配制之培养基配制须作生长试验与污染测试。

6、 以待测试培养基培养 MDCK cell,接种MDCK 细胞于 6-well plate (或3 5mm TC dish) 中,每个 well 接种 1× 102 活细胞,同时作对照组实验。

7、 接种 5~7 天后,在 100 倍倒立显微镜作观察细胞群落之生长,待细胞群落大到可以肉眼观察,而群落间不互相接触时即可。

8、去除培养基,加入 1 ml Carnoy’s 固定液(甲醇:冰醋酸﹦ 3:1),室温下静置 10 min。

9、去除固定液,水洗二次。

10、加入 1 mL10 % Giemsa solution,,室温下静置染色 2-3 min。

11、去除染液,水洗二次。

12、以肉眼计数群落数,并比较之,若新配制或新批号的培养基对细胞生长不佳,则丢弃之。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序