丁香实验_LOGO
登录
提问
提问
我要登录
|免费注册
丁香通
丁香实验推荐阅读
耐热DNA聚合酶的选择指南

一、耐热DNA聚合酶特点合理选择耐热DNA聚合酶是PCR成败与否的一个关键因素,如何选择最合适的耐热聚合酶,是进行PCR实验首先要考虑的问题。目前市面上有许多耐热DNA聚合酶,虽然名称各不相同,但主要区别在于特异性、保真性、耐热性、扩增速率、扩增片段长度等几个指标。TIANGEN公司生产的耐热DNA聚合酶全部采用标准化生产工艺和质量检测标准,是经过多次分子筛、离子交换层析柱纯化的超纯型产品,去除了宿主DNA和蛋白酶等杂质因素的影响,特异性非常好,而且特别稳定,经检测,室温放置1个月,活性不变或改变甚微。二、不同耐热聚合酶的比较Taq:扩增效率最高的耐热DNA聚合酶,能很好的扩增6kb以下的DNA片段。扩增碱基出错率为10-5左右。Pfu:目前保真度最高的耐热DNA聚合酶,碱基出错率为10-6,但扩增效率低于Taq酶,一般能很好的扩增2kb以下的片段。Taq Plus:即扩增效率高和保真度好于一身。扩增效率比Pfu高,保真度比Taq好。能有效的扩增10kb以下的片段。Hotstart Taq:经过化学修饰的耐热DNA聚合酶。此酶在常温下,活性被化学基团封闭,要在94-95℃加热数分钟才能

丁香实验推荐阅读
PCR的污染与对策

PCR反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生。 污染原因 (一)标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶或形成气溶胶而扩散,导致彼此间的污染。 (二)PCR试剂的污染:主要是由于在PCR试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染。 (三)PCR扩增产物污染:这是PCR反应中最主要最常见的污染问题。因为PCR产物拷贝量大(一般为1013拷贝/ml),远远高于PCR检测数个拷贝的极限,所以极微量的PCR产物污染,就可造成假阳就可形成假阳性。 还有一种容易忽视,最可能造成PCR产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样枪的反复吸样都可形成气溶胶而污染。据计算一个气溶胶颗粒可含48000拷贝,因而由其造成的污染是一个值得特别重视的问题。 (四)实验

丁香实验推荐阅读
PCR技术的拓展知识

1、逆转录PCR(RT-PCR)用来扩增RNA的方法。 2、竞争逆转录PCR(competitive reverse transcription-polymerase chain rection C-RT-PCR)低丰度RNA定量的好方法。 3、多重PCR(multiples PCR)在同一PCR体系中加入多对引物可用于基天长度很长,发生多处缺失的检测。扩增同一模板的几个区域。 4、多种PCR可同时加入多套以生物素标记的引物起进手PCR反应。 5、反向PCR(iverse polymerase chain reaction)对一个已知的DNA片段两侧的未知序列进行扩增和研究。 6、不对称PCR在扩增循环中引入不同引物浓度,以得到单链DNA并进行列测定,以了解目的基因的序列。 7、锚定PCR(anchored polymerase chain reaction)帮助克服序列未知或序列未全知带来的障碍。在未知序列未端添加同聚物尾序,将互补的引物连接于一段带限制性内切酶位点的锚上,在锚引物和基因另一侧特异性引物的作用下,将未知序列扩增出来。 8、着色互补试验或荧光PCR(color comp

丁香实验推荐阅读
PCR技术的原理

PCR是体外酶促合成特异DNA片段的新方法,主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成:即在高温(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物3’端为合成的起点,以单核苷酸为原料,沿模板以5’→3’方向延伸,合成DNA新链。这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍。  PCR基本原理示意图 假设扩增效率为“X”,循环数为“n”,则二者与扩增倍数“y”的关系式可表示为:y=(1+X)n。扩增30个循环即n=30时,若X=100%,则y=230=107374182

丁香实验推荐阅读
PCR技术(四):PCR污染与对策

PCR反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生。 一、污染原因 (一)标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提 取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶或形成气溶胶而扩散,导致彼此间的污染。 (二)PCR试剂的污染:主要是由于在PCR试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染。 (三)PCR扩增产物污染。这是PCR反应中最主要最常见的污染问题。因为PCR产物拷贝量大(一般为1013拷贝/ml),远远高于PCR检测数个拷贝的极限,所以极微量的PCR产物 污染,就可造成假阳就可形成假阳性。 还有一种容易忽视,最可能造成PCR产物污染的形式是气溶胶污染:在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样 枪的反复吸样都可形成气溶胶而污染。据计算一个气溶胶颗粒可含48000拷贝,因而由 其造成的污染是一个值得特别重视的问题

丁香实验推荐阅读
PCR技术(十七):用PCR扩增cDNA库中的特异序列

最常用的基因分离方法需要建立组织或细胞RNA的cDNA库,然后用抗体或DNA探针筛选出感兴趣的基因。虽然这个方法已成功地克隆了大量基因,但建立和筛 选CDNA库是一项非常耗时、费力的工作,而且用寡聚核苷酸作探针进行筛选需大量蛋白质序列结构的资料。聚合酶链的反应(PCR)方法可使一种特异DNA扩增几百万倍,并已成为分子克隆和诊断的十分有用的工具。最近,TAQDNA聚合酶的使用极大地简化了PCR方法。该酶在75℃左右有很宽的最适温度区,在小于95℃以下重复保温仍能存活,更重要的是,该酶活性高,无外切酶活性,因此理论上不用通过建立和筛选基因 库的所用步骤就能从序列编码的基因作模板以探索一种简单。快速的基因分离方法,下面我们将描述在鉴定南美蝙蝠唾液腺外分泌蛋白中使用的方法和过程。 Dr.S.Gardell(MSDRL,WestPoint,PA)纯化了从南美蝙蝠唾液腺中分离的一种外分泌蛋白,因此其部分肽序列(GlyLeuGlyCysAspLeuMet)是开始本实验的关键。为检验不用传统筛选方法即能克隆该蛋白基因的假说,我们采取了如下策略: a)在Lambdagt22中建立一个在蝙蝠唾液腺中所有

丁香实验推荐阅读
PCR技术(十):PCR产物克隆方法

平端连接 通常情况下,PCR产物可直接与平端载体DNA进行连接,但其连接效 率效低。因为TaqDNA聚合酶具有非模板依赖性末端转移酶活性,能 在两6条DNA链的3'末端加上一个多余的碱基,使合成的PCR产物成为 3'突出一个碱基的DNA分子。这种DNA分子的连接效率很低。由于PCR 产物的效率通过较高,。在采用大量T4DNA连接酶并配以5—10u T4 RNA连接酶时,可显著提高其连接效率。对于较短PCR产物,用PUS19 的HincⅡ位点进行克隆,以X-gal和IPTG筛选,常可得到足量重组 子。另一种提高克隆效率的途径是先用Klenow大片段或T4DNA聚合酶 消去3'末端突出碱基将PCR产物变成平端DNA,然后再用平端连接法 克隆PCR产物。 粘端连接 引物中设计入限制酶位点:由于PCR引物的5'末端可以增加一些非 互补碱基,因此可以在两引物的5'末端设计单限制酶或双限制酶切 位点。这样得到的PCR产物用限制酶消化产生粘性末端,即可与有互 补粘端的载体DNA重组。这种克隆方法效率较高,且当两引物中设计 不同酶切位点时,可有效地定向克隆PCR产物。其缺点是需要加长 PCR引物,除

丁香实验推荐阅读
PCR技术(二):Taq DNA聚合酶

Taq DNA聚合酶是从一种水生栖热菌(Thermusaquaticus)yT1株分离提取的。yT是一种嗜热真菌,能在70~75℃生长。该菌是1969年从美国黄石国家森林公园火山温泉中分离的。 (一)酶活性与热稳定性 该酶基因全长2496个碱基,编码832个氨基酸,酶蛋白分子为 94KDa。其比活性为200000单位/mg。75~80℃时每个酶分子每秒钟可延伸约150个核苷 酸,70℃延伸率大于60个核苷酸/秒,55℃时为24个核苷酸/秒。温度过高(90℃以上) 或过低(22℃)都可影响Taq DNA聚合酶的活性,该酶虽然在90℃以上几乎无DNA合成, 但确有良好的热稳定性,在PCR循环的高温条件下仍能保持较高的活性。在92.5℃、95℃ 、97.5℃时,PCR混合物中的Taq DNA聚合酶分别经130min,40min和5~6min后,仍可 保持50%的活性,实验表明。PCR反应时变性温度为95℃~20sec,50个循环后,Taq DNA聚合酶仍有65%的活性。Taq DNA聚合酶的热稳定性是该酶用于PCR反应的前提条件,也是PCR反应能迅速发展和广泛应用的原因。Taq DNA聚合酶

丁香实验推荐阅读
PCR技术(PCR ,Polymerase chain reaction)

PCR (Polymerase chain reaction) 是用一对寡聚DNA作为引物,通过加温变性-退火-DNA合成这一周期的多次循环,使目的DNA片段得到扩增。由于这种扩增产物是以指数形式积累的,经25-30个循环后,扩增倍数可达106。Dr. Karry Mullis 1985年发明,获1993年度诺贝尔化学奖; (一)基本要素 1、Taq DNA聚合酶: 水生栖热菌(thermus aquaticus,Taq)的DNA聚合酶 ①5’→3’DNA聚合酶活性;  ②无3’→5’外切酶活性,  35轮0.25%错配,与原始模板有差别;  最适聚合酶 温度72℃,选择72℃延伸  半衰期:92.5℃ 130mi 95℃ 40min 97.5℃5—6min  变性温度:≤95℃使其在整个扩增循环中保持足够活性 pfu DNA 聚合酶 耐热  5’→3’DNA聚合酶活性  3’→5’外切酶活性   精确度:pfu >Taq  但pfu扩增效率通常比Taq酶略   文献报道:Taq+pfu 会起到较好效果 2、Primer 本身不要出现内部互补序列形

丁香实验推荐阅读
PCR反应的五要素

1、引物 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则:  ①引物长度: 15-30bp,常用为20bp左右。  ②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。  ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。  ④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。  ⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。  ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。  ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度0.1~1umol或10~100pmol,以

丁香实验推荐阅读
PCR的优越性与局限性

聚合酶链反应即PCR技术,因为其对基因或特定核酸序列在短时间内的极大的扩增效率,已在感染性疾病、肿瘤、遗传病、寄生虫病、法医学、动植物和考古等的诊断和研究中得到了广泛的应用,并在某些方面几乎是难以替代的。但是,像自然界的任何事物一样,PCR也有其局限性,稍不注意,就很容易造成错误的判断。 感染性疾病由病原微生物引起,主要有病毒、细菌、衣原体、支原体和螺旋体等,在PCR出现以前,这些病原体通常采用培养、免疫学方法测定特异抗原抗体,核酸杂交等进行临床检测,但这些方法对某些病原体要么难以进行(如导致结核病的结核杆菌、引起性病的沙眼衣原体和诱发肝炎的乙肝丙肝病毒等的培养),要么难以判断体内的复制情况或检测的灵敏度不够(如乙肝丙肝病毒和人免疫缺陷病毒等的抗原抗体检测及核酸杂交检测等)。PCR的出现,可以说从根本 上改变了这一点,其极高的检测灵敏度和特异性,使难培养病原体的检测变得迅捷而又准确。各种定量PCR模式的出现,又使其抗病毒疗效的判断可以很客观地从病毒核酸的量上反映出来。并且,PCR用于病原体感染的血液筛查,可以检出抗原抗体尚未出现的“窗口期”内的感染,从而避免经输血引发的感染性疾病的传播

丁香实验推荐阅读
PCR常用优化策略

PCR过程中如果没有找到最佳的扩增条件将会导致产生许多不确定的、不需要的产物,有时甚至没有目的产物;而在另一个极端,又可能没有扩增到任何产物。这时改变已知对引物-模板的忠实性和引物延伸有影响的诸多参数中的一两个,将会达到优化扩增的目的。其中最主要的优化变量包括 Mg2+浓度、缓冲液pH值和循环条件,在循环条件中又以退火温度最为重要。 1、降落PCR 降落PCR代表了一种完全不同的PCR优化方法,它不是用许多反应管和每管用不同的试剂浓度和循环参数,而是用一个反应管或一小组反应管,在适合于扩增目的产物而不得到人为产物或引物二聚体的循环条件下反应;设计多循环反应的程序,使相连循环的退火温度越来越低、由于开始时的退火温度选择高于估计的Tm值,随着循环的进行,退火温度逐渐降到Tm值,并最终低于这个水平。这个策略有利于确保第一个引物-模板杂交事件发生在最互补的反应物之间,即那些产生目的扩增产物的反应物之间。尽管退火温度最终会降到非特异杂交的Tm值,但此时目的扩增产物已开始几何扩增,在剩下的循环中一直处于主导地位。由于目标是在较早的循环中避免低Tm值配对,在降落PCR中必需应用热启动技术。当引物和模

丁香实验推荐阅读
聚合酶链反应

聚合酶链反应(Polymerase Chain Reaction)简称PCR,是一项在短时间内大量扩增特定的DNA片段的分子生物学技术。 开发史 这项技术的发明人是Kary Mullis.1983年,在一家生物高技术公司(Cetus)工作的Mullis着手解决用简单的方法鉴定某一段DNA的技术问题,有一天晚上他驱车在北部加州101号高速公路上,灵机一动想到了一个实际上可以无限扩增某段DNA的简单方法,即PCR。在1985年的一次学术会议上,此方法首次被介绍,在分子生物科学家中也引起了链反应。大家很快地纷纷采用这个方法,很多人还很奇怪自己怎么没有首先想到这么做。Cetus给了Mullis一万美元的奖金,随后把这项技术的专利以三亿美元的价格转让给另一家生物高技术公司。在短短的几年内,PCR迅速成为分子生物学的一项常规手段,并得到了广泛的实际应用,被许多科学家视为近十年来分子生物学领域最重要的一项技术突破。1993年,Mullis因此获得诺贝尔化学奖。 原理和方法 众所周知,DNA是由四种碱基按互补配对原则(即腺嘌呤A对胸腺嘧啶T,鸟嘌呤G对胞嘧啶C)组成的螺旋双链。在细胞内,DNA复制时,

丁香实验推荐阅读
影响PCR仪器温度控制性能的因素

一、PCR仪器之间的差别对实验结果的影响。如前所述,没有任何两台PCR仪器的温度控制是一模一样的。相对于预设的温度模块温度总是偏高或偏低,就是同一模块不同的孔之间,温度有时也会不一样,相差可能达几摄氏度之多。一些PCR仪温度控制性能的不足造成的后果是:当PCR仪的模块温度在升温时,温度过冲或不足,不能准确的达到预设的平台温度。 二、温度控制技术的差别对实验结果的影响。导致PCR仪温度控制性能优劣的因素,首先是温度控制技术。调节PCR仪模块的温度,使其达到并保持在某一温度有很多方式。每一种方式都有优点和缺点。另外,这些技术被运用控制的水平对于温度控制的水准是很重要的,且有很大不同。大多数PCR仪器的温度控制性能是很差的。在单一或多传感器控制机制上的不同显而易见的引起了温度的不均一性。 三、仪器老化对实验结果的影响。虽然PCR仪没有任何的机械或可移动部件,但是那并不意味着它不会磨损。电子器件的性能会随着时间的延长而老化,并由于过度的使用而加速老化。Peltier器件的失效或磨损会引起模块的热斑或冷斑,通常PCR仪器不能识别这种由于机械磨损,模块延展和收缩效应引起的温控性能的不同。因此,为掌

丁香实验推荐阅读
PCR技术系列三:Taq DNA聚合酶

Taq DNA聚合酶是从一种水生栖热菌(Thermusaquaticus)yT1株分离提取的。yT是一种嗜热真菌,能在70~75℃生长。该菌是1969年从美国黄石国家森林公园火山温泉 中分离的。 酶活性与热稳定性 该酶基因全长2496个碱基,编码832个氨基酸,酶蛋白分子为 94KDa.其比活性为200000单位/mg.75~80℃时每个酶分子每秒钟可延伸约150个核苷 酸,70℃延伸率大于60个核苷酸/秒,55℃时为24个核苷酸/秒。温度过高(90℃以上) 或过低(22℃)都可影响Taq DNA聚合酶的活性,该酶虽然在90℃以上几乎无DNA合成, 但确有良好的热稳定性,在PCR循环的高温条件下仍能保持较高的活性。在92.5℃、95℃ 、97.5℃时,PCR混合物中的Taq DNA聚合酶分别经130min,40min和5~6min后,仍可 保持50%的活性,实验表明。PCR反应时变性温度为95℃~20sec,50个循环后,Taq DNA聚合酶仍有65%的活性。Taq DNA聚合酶的热稳定性是该酶用于PCR反应的前提条 件,也是PCR反应能迅速发展和广泛应用的原因。Taq DNA聚合酶

丁香实验推荐阅读
PCR技术系列四:PCR污染与对策

PCR反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生。一、污染原因(一)标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于 密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提 取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶 或形成气溶胶而扩散,导致彼此间的污染。(二)PCR试剂的污染: 主要是由于在PCR试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染。(三)PCR扩增产物污染。这是PCR反应中最主要最常见的污染问题。因为PCR产物拷贝量 大(一般为1013拷贝/ml),远远高于PCR检测数个拷贝的极限,所以极微量的PCR产物 污染,就可造成假阳就可形成假阳性。还有一种容易忽视,最可能造成PCR产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样 枪的反复吸样都可形成气溶胶而污染。据计算一个气溶胶颗粒可含48000拷贝,因而由其造成的污染是一个值得特别重视的问题。(四

丁香实验推荐阅读
PCR技术系列五:常见问题分析与对策

PCR产物的电泳检测时间 一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚致消失。 假阴性,不出现扩增条带 PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消 化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模 板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处 理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应 固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而 导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不 理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度 高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单 位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝

丁香实验推荐阅读
PCR技术系列七:mRNA差异PCR技术

生物界的丰富多彩很大程度上取决于严格调控下的基因的选择性表达。高等生物的细胞内约含有105个不同的基因,而主 基因在某个特定的细胞中,只有占15%的一小部分表达。而且在不同的细胞中,选择性表达的基础也是不同的。正是这些基因的选择不同决定了整个生命的过程:如细胞的生长分化,激素和细胞困子对细胞的作用、细胞周期的调控以及衰老、死亡等。和细胞的正常生理一样,一些病理的反应如肿瘤等也是由基因表达的改变引起的。所以,这种基因的选择性表达,是细胞生物学要研究的核心问题之一,而对于这一问题的研究方法也是分析生物发育和调控机制的一种重要方法。 以往,研究基因表达差异的主要方法是双向蛋白质电泳指纹图谱和依赖杂交的筛选技术。这两种技术各有自己的适用范围和优点。蛋白质指纹技术具有很高的灵敏度,可以很方便地区分出不同的表达产物,但往往得不到足够的量来分析和克隆它们的基因;而杂交技术则需要较长的周期和繁琐的步骤,也易发生基因的丢失。所以多年以来,人们一直想找出一种更方便有效的替代方法。 哈佛大学医学院的Peng Liang和Arthur B。Pardee博士发明的mRNA差别显示即DD法(differenti

丁香实验推荐阅读
PCR技术系列八:扩增较大片段DNA的PCR方法

一般PCR方法在扩增大片段DNA时的局限性 通常所用的PCR方法都在两个方面有局限,即目标产物精确程度和合成片段的大小。Pfu(Pyrococcus furiosus)DNA聚合酶,具有完整的3'外切酶校读活性(3'-editing-exonuclease),可以将每个循环中碱基的错配率由1undefined-4降到1undefined-3,从而提高PCR产物的准确性。但它在扩增1.5-2.0kb片段时,效率比Klentaq l(Taq DNA聚酶N-末端缺失突变体,类似于E.coli DNA聚合酶I Klenow片段)或AmpliTaq(全长的Taq DNA聚合酶)等聚合酶差;在扩增5.0-7.0kb片段时亦不比各种形式的Taq DNA聚合酶(如Ampli Taq、Klentaq 1、Klentaq 5等N-末端缺失的变异株)有明显优越之处。因而以往的PCR反应产物限制在5.0kb以内。超出这一范围,PCR扩增反应效率将明显下降,同时产物会降解。即使将延伸时间定为30分钟(10倍于通常所需)亦无改进。 利用两种DNA聚合酶进行较大片段DNA的扩增 美国华盛顿大学医学院的Barnes WM等对前述问题进行了深入系

丁香实验推荐阅读
PCR技术系列十一:PCR片段拼接的SOE和SDL方法

PCR技术(多聚酶链式反应)是现代分子生物学的一个巨大突破,它能在体外迅速、 大量、灵敏地扩增基因片段。可是,经PCR技术扩增的大量相关基因片段如何能有效 拼接,却是一个很值行探讨的问题。传统的方法是引入限制性内切酶位点,这不但操 作繁杂,而有时为了构建限性位点还会影响解读三联密码的正确性。本介绍两种基因 拼接的新方法,即SOE和SDL法,就能巧妙地解决这个问题。 SOE法 1989年,Horton等人提出了SOE法(Gene splicing by over lap extension),即通 过复制时DNA链的交错延伸不实现基因拼接。本法可分四步进行。 1、引物设计:引物a和d是常规引物;b的左半段为常规引物,右半段为基因Ⅱ的引 物序列;c同理;则b和c的部分碱基可互补配对。 2、基因I、Ⅱ分别扩增,产物相应为片段A、B和C、D. 3、两种产物混合,经变性及退火处理,A链和D链部分碱基互补配对,成杂交链。 4、在DNApolymeraseI作用下,A和D链互为引物和模板,合成出A'D'链,即为基因I 和基因Ⅱ的接接产物。若在引物中引入突变的碱基序列,则在接接产物中,将按预先 设计

提问
48 小时有问必答
扫一扫
丁香实验小程序二维码
添加小程序
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序