网络 二、选用遗传背景明确,具有已知菌丛和模型性状显著且隐定的动物 医学科研实验中的一个关键问题,就是怎样使动物实验的结果正确可靠,有规律,从而达到精确判定实验结果,得出正确的结论。因此,要尽量选用经遗传学、微生物学、营养学、环境卫生学的控制而培育的标准化实验动物,才能排除因实验动物带细菌、带病毒、带寄生虫和潜在疾病对实验结果的影响;也才能排除因实验动物杂交,遗传上不均持,个体差异,反应不一致;才能便于把我们所获得的实验研究成果在国际间进行学术交流。 医学实验研究中一般应尽量不选用随意交配而繁殖饲养的杂种动物或在开放条件下繁殖饲养的带菌、带病毒和带寄生虫的普通动物。根据研究的目的要求,可选择采用遗传学控制方法培育出来的纯系动物或称近交系动物;突变系动物;封闭群动物;系统杂交动物即F1动物;或采用微生物控制方法而培育的无菌动物;已知菌动物或称悉生动物;无特定病原体动物。 近交系动物由于存在遗传的均质性,反应的一致性,实验结果精确可靠等优点已被广泛用于医学科学研究各个领域。如可选用
网络 第八章 生物医学研究中实验动物的选择 第一节 选择原则和方法 临床研究和实验室研究是医学科学研究的两个基本途径,它们均离不开实验动物。尤其是实验室研究,实验动物是主要研究对象。因此,选择什么样的实验动物作实验是医学科学研究工作中一个重要环节,不能随便选用一种实验动物来作科学研究,因为在不适当的动物身上进行实验,常可导致实验结果的不可靠,甚至使整个实验徒劳无功,直接关系到科学研究的成败和质量。事实上,每一项科学实验都有其最适宜的实验动物。 医学科学研究工作中实验动物的选择,首先应根据实验目的和要求来选择,其次再参考是否容易获得、是否经济,是否容易饲养和管理等情况。在实验动物选择上必须注意三点,即实验动物的种类(Species);品种(Breed)或品系(Strain);质量和实验动物的健康状态。选择时还要注意下列向个方面: 一、选用与人的机能、代谢、结构及疾病特点相似的实验动物 医学科学研究的根本目的是要解决人类疾病的预防和治疗问题。因此,动物的种系发展阶段在选
网络 八、雪貂 雪貂是食肉类动物,属于鼬科。经驯化供实验的雪貂(Mustela Pulourius Furo)毛色呈野生色或白化的,体毛呈淡黄色,黑脸、足和尾巴,这都被认为来源于鸡貂,这是在北美见到的最平常的实验种类。白化雪貂粉红眼睛、白色、随着雪貂的生长,由于皮脂腺分泌高成了黄色。雪貂同其它鼬科一样,显示了一些解剖学上的独特性。包括缺乏盲肠,雄貂缺乏前列腺,它们有典型的对称的鼬科分泌麝香的肛门腺,这对腺体是雪貂潜在的防御器官,雪貂如受到惊恐时,就可以排空这些腺,在雌貂动情期,麝香腺的主动分泌增加,这些腺体可以用外科手术摘除,最适摘除时间是在雪貂6~8个月龄时。这一种类雪貂缺乏汗腺,因此,当温度超过32℃(90F)时,有热虚脱的可能,它的散热通过肺的发散。因此要特别注意饲养室的空气对流和降温措施。通常雪貂的实验和繁殖期为5至6年,而整个寿命约14年。在雪貂中,体重的变化是相当大的。性别之间的体重差异几乎两部,雄貂有雌貂的两倍大小。由于季节体重波动占总体重的30~40%,这是因
网络 七、貂 貂体形小,凶猛食肉,主要产于南美。貂具有发育很好的肛袋。肛袋腺可产生特殊气味的分泌物,貂无盲肠且小肠很短(为体长的四倍),胃亦很少。上述特征决定貂需少量多餐,平均日摄食量为40~53克,每次摄食间隔为3小时,人工饲养貂寿命不超过4~5年。野生貂有数种亚种,其皮肤和眼睛的颜色有差异,多为淡褐色手和黑褐色,人工饲养者多为黑褐色,。貂的发情周期明显依赖于季节变化,秋、冬季为正常生殖周期时间,分娩一般在1月底至3月初。一只雄貂可有效地交配五只雌貂。交配一般持续20分钟。雌貂于交配后24~36小时排第一次卵,7~10天后排第二次卵。第一次排卵时未受孕者,争取在第二次排卵期再交配,成功率达90%。交配后10-40天发生种植。妊娠期一般为30~32天。一胎最多生10~11只,但通常为4只,新生貂无毛、无视力、无听力,重量约10克。雌貂吃仔现象很少见。幼貂生长迅速,21天时体重增至100克,此时可给予食物喂养,6~10周时即可断奶,并及时给予疫苗接种防病。先成对分养,4月龄以后可单个分笼饲养
网络 六、鱼类 鱼类动物作为生物医学、环境保护科学等领域的实验研究对象或材料,已在世界各地获得了不少科研成果,如1950年Gordon氏、1968年Klontz和Smith二氏等的研究,仅在1968年以前十二年中,各国主要生物科学的杂志就发表有关报告达2,500篇,近20余年来,有关文献就更多了,在已知的脊椎动物种属中,鱼类达30,000种(估计有40,000种),而鸟类为8,600种,哺乳类(即现今常用的小鼠、大鼠、家兔、家犬等属之)却只有4,500种。可见将鱼类动物作为实验材料确系取之不尽的资源,这促使人们对如此丰富的潜在资源广为开发研究和尝试应用。 选用鱼类进行生物医学研究,特别是药物的毒理学和药理学试验,具有很多独特的优点:鱼对某些药物、毒气十分敏感,只要含有极微量的成分就可引起很强的反应;以鱼进行药理、毒理试验,除以死亡为指标外,对其习性的影响可能更为灵敏;以体型较小的鱼直接放入不同浓度的适宜;这对研究某些含量低或药理作用弱而需长期口服给药的中草药可能更为适宜
网络 五、水蛭 水蛭的背部肌肉和腹直肌一样,对乙酰胆碱(Ach)非常敏感,如用毒扁豆毒碱处理后,对乙酰胆碱的敏感性大增,此时乙酰胆碱的含量即使低到10-8M或以下,亦能使悬于5毫升浴槽中的肌肉收缩,因此适用于测定微量的的未知拟胆碱药。亦适于测定刺激神经(如猫颈上神经)后释放的Ach量。 取水蛭一只,背位固定,分别钉住吸盘和尾吸盘,沿二条白线,由口向尾部剪开,去掉内部脏器,钉住背肌的二边,从中剪开成二个标本,每一标本二端穿线,上端连描记杠杆,下端固定在L形管上,放置在通以空气的蛙任氏液中,浴槽为10毫升,最好5毫升。营养液维持室温即行。实验前标本应稳定3小时,在此期间,每15分钟冲洗一次,其反应较蛙腹直肌慢。先以Ach为对照。将Ach10-5M加入浴槽,观察收缩反应,然后找出引起合适反应的剂量,选择几个剂量画出对数剂量一反应曲线。未知药按上法实验,亦制作曲线以比较之。
网络 第九节 有开发价值的其他野生动物 一、蝙蝠 蝙蝠可用于实验的有几种。一为颊�蝠(Myotis Sodalis),一为兔蝠(Plecotus Auritus)另外还有两种蝠(Pipistrellus;Eptesicus Fuscus)。属于真兽亚纲,翼手目。它是善于在空中飞行的哺乳动物。蝙蝠的翼是由皮膜形成的。翼上没有羽毛,这是与鸟类不同的地方。蝙蝠是胎生和哺乳的。一年生一仔,雌蝙蝠在夏季在仔,仔体发育相当完全。它的寿命较长约20年。吸血蝠的妊娠期为90~120天,成年体重为15~50克,体温为37~40℃。口很宽阔,口内有细小而尖锐的牙齿,适于捕捉飞虫。它的视力很弱,但是听觉和触觉却很灵敏,在飞行的时候,喉内能够产生超声波,超声波通过口腔发射出来,当超声波遇到昆虫或障碍物而反射回来时,它能用耳朵接受,而且这种回声定位的精确性和干扰能力非常惊人,这对于研究医学工程具有重要价值。蝙蝠的真菌感染、寄生虫感染、生殖和狂犬病等和人类的这些疾病相似,可用于生殖、生理、行为、寄生虫病、皮肤真
网络 二、生物医学的研究中的应用 犰狳对人的麻风杆菌易感,给犰狳腹部皮内、耳皮内、带间皮内、足垫或静脉接种0.1ml麻风杆菌(含菌量约为8.9×107/ml,形态指数为3%)即可引起发病。在接种部位可以出现结节性内芽肿,为类瘤型麻风感染。因此犰狳是研究人类瘤型麻风病和制造麻风疫苗的重要动物模型。除麻风病外,犰狳对回归热、斑疹伤寒、鼠性斑疹伤寒、旋毛虫病、血吸虫病、非洲睡眠病等人类疾病也很敏感,因此,也很适合研究这些人类疾病。因为犰狳是同卵动物,免疫反应很弱,排斥作用极小,所以在研究免疫抑制在药物方面和研究免疫反应机制方面是一种有价值的动物。酞咪呱啶(Thalidomide)可致人类畸胎,但对大多数动物无致畸胎作用,对犰狳有致先天畸形作用,因此可选用犰狳来替代人来观察和研究畸胎的发生。犰狳的鳞片和带型的异常经常发生并可以遗传,这为研究引起这些变异的遗传突变因素提供了可能,可用于体细胞变化性研究。采用遗传学上相同的犰狳个体进行实验研究,实验结果的重得性好,尤其在慢性中毒(包括药物)的研究中的更
网络 第七节 九带犰狳 一、生物学特性和解剖生理特点 九带犰狳(Dasypus Novemcinctus Linn)它是一种初级哺乳动物,属于真兽亚纲贫齿目,其特性为低体温(30~35℃);规律性地一胎四仔(同卵,单合子);有与人相似的单子宫;有一个延长的胚胞着床期(约14~16周);有低氧负荷(Oxygen Debt)能力;免疫反应弱,仅有原始免疫反应;对某些人的疾病易感;有复杂的背甲结构,背板带易发生变异;寿命较长,约为12~15年。这些特征对研究感染及慢性感染、遗传、免疫、化疗等是相当有价值的。 犰狳产于南美洲安弟期山脉一带,中美、墨西哥和美国南部地区。犰狳不冬眠,夜间活动,天然习性是食虫。成年犰狳重3~5kg,后腿短而有力,很适于掘穴。在身体的下面有粗毛,稀疏而成簇分布。身体的上部有革化的甲壳防护。甲壳主要分三部分:头、肩为一尖的屑壳所复盖,大部分背部、胯、骨盆甚至到尾亦复有甲壳。头肩之间有一皮肤褶襞,背尾间亦然。甲壳的中间部有9个可动带(以皮肤褶襞联接),所谓九带犰狳
网络 第十章 生物医学重点研究课题中的实验动物选择与应用 第一节 免疫学研究中实验动物的选择与应用 一、免疫学研究中实验动物的作用 免疫学是近年来医学科学中发展较快的一门学科。随着分子生物学、免疫化学等的发展和免疫学新技术的应用,免疫学得到了飞跃发展,不仅改变了许多旧的传统观察,而且由于免疫学的知识已渗透到医学科学的各个领域,形成了多种新兴学科,给许多疾病的诊断、预防及治疗开辟了广阔的前景。现在在医学理论与医学实践中,涉及有关免疫学的问题越来越多,受到人们广泛的重视。 免疫学的发展与实验动物科学兴起有密切关系。免疫学的研究,包括从预防感染到区别机体自身或非自身的基本生物现象有研究,一般多选用实验动物作对象,而且免疫学上的大量知识是通过动物实验获得的。特别是各种近交系和突变系动物、无菌动物、悉生动物及无特定病原体动物的培育,为免疫学研究提供了重要手段,大大促进了免疫学的发展。 为了研究免疫反应的原理以及发病机理的本质,单从人体内进行研究是非常困难的,我们观察病人,无法
网络 三、心血系系疾病的动物模型 (一)动脉粥样硬代模型 常选用兔、猪、大鼠、鸡、鸽、猴和犬等动物。常用的复制方法有下面几种(包括高血脂模型): 1.高胆固醇、高脂肪饲料喂养法:是目前比较常用的方法,特点是死亡率低,可长期观察,但费时久。一般在家兔、鸽、鸡等,经数周喂养就可产生明显的高脂血症,经数月就能形成早期的动脉粥样硬化病变。大白鼠、小白鼠及犬则较难形成,如果饲料中增加蛋黄、胆酸和猪油等,可用促进作用。为了促进病变的形成,在高脂饲料中还可加入甲基硫氧嘧啶、丙基硫氧嘧啶、 甲亢 平、苯丙胺、维生素D、烟碱或蔗糖等。 具体复制方法:兔诱发模型:体重2kg左右,每天喂服胆固醇0.3g,4个月后肉眼可见主动脉粥样硬化斑块;若每天剂量增至0.5g,3个月后可出现斑块;若增至每天1g,可缩为2个月。在饲料中加入15%蛋黄粉、0.5%胆固醇和5%猪油,经3周后,将饲料中胆固醇减去,再喂3周,可使主动脉斑块发生率达100%,血清胆固醇可长高至20
网络 第四节 动物模型的复制方法 一、复制方法和应用 动物疾病模型的复制,是用人为的方法,使动物在一定的致病因素(物理的、化学的、生物的)作用下,造成动物组织、器官或全身一定损害,出现某些类似人类疾病的功能、代谢、形态结构方面的变化或各种疾病,通过这种手段来研究人类疾病的发生、发展规律,为研究人类疾病的预防、治疗(包括新药物试用)提供理论依据。所以动物疾病模型的复制,在医学科学研究中占有十分重要的地位。 目前我国生物医学科学研究中,动物疾病模型主要用于三个方面:即实验生物学、实验病理学和实验治疗学(新药筛选亦属于实验治疗学范畴)。由于研究目的不同,对于疾病模型的要求也有所区别。如实验病理学,它着重于研究用某种特定方法复制出某些疾病。整个疾病复制过程,就是它的研究内容,目的是通过疾病的复制去探讨疾病的病因学和发病原。而实验治疗学则完全不同,疾病的复制仅是它研究的开始,因为它的主要目的是为了阐明在该病的发生发展过程中,某些治疗措施或药物的疗效如何。 诱发性动物模型的复制方法不
网络 二、注意事项 研究者的设计动物模型时除了要了解掌握上述一些原则外,还要注意下列一些问题: (一)注意模型要尽可能再现所要求的人类疾病 复制模型时必须强调从研究目的出发,熟悉诱发条件、宿主特征、疾病表现和发病机理,即充分了解所需动物模型的全部信息,分析是否能得到预期的结果。例如诱发动脉粥样硬化时,草食类动物兔需要的胆固醇剂量比人高得多,而且病变部位并不出现在主动脉弓。病理表现为纤维组织和平滑肌增生为主,可有大量泡沫样细胞形成斑块,这与人类的情况差距较大。因此要求研究者懂得,各种动物所需的诱发剂量、宿主年龄、性别和遗传性状等对实验的影响,以及动物疾病在组织学、生化学、病理学等方面与人类疾病之间的差异。要避免选用与人类对应器官相似性很小的动物疾病作为模型材料。为了增加所复制动物疾病模型与人类疾病的相似性,应尽量选用各种敏感动物与人类疾病相应的动物模型,可参考表9-1。 表9-1 各种敏感动物与人类相似的疾病模型 动 物 模 型 动 物 种 类 相应人类的疾病 阿留申
网络 第三节 动物模型的设计原则和注意事项 一、设计原则 生物医学科研专业设计中常要考虑如何建立动物模型的问题,因为很多阐明疾病及疗效机制的实验不可能或不应该在病人身上进行。常要依赖于复制动物模型,但一定要进行周密设计,设计时要遵循下列一些原则。 (一)相似性 在动物身上复制人类疾病模型。目的在于从中找出可以推广(外推)应用于病人的有关规律。外推法(Extrapolation)要冒风险,因为动物与人到底不是一种生物。例如在动物身上无效的药物不等于临床无效,反之也然。因此,设计动物疾病模型的一个重要原则是,所复制的模型应尽可能近似于人类疾病的情况。 能够找到与人类疾病相同的动物自发性疾病当然最好。例如日本人找到的大白鼠原发性 高血压 就是研究人类原发性 高血压 的理想模型,老母猪自发性冠状动脉粥样硬化是研究人类冠心病的理想模型;自发性狗类 风湿性关节炎 与人类幼年型类 风湿性关节炎 十分相似
网络 二、按系统范围分类 (一)疾病的基本病理过程动物模型 这类动物疾病模型是指各种疾病共同性的一些病理变化过程的模型。致病因素在一定条件下作用于动物,使动物组织、器官或全身造成一定病理损伤,出现各种功能、代谢和形成结构的变化,其中有些变化是各种疾病都可能发生的,不是各种疾病所特有的一些变化,如发热、缺氧、水肿、炎症、休克、弥漫性血管内凝血、电解质紊乱、酸硷平衡障碍等,我们称之为疾病的基本病理过程。 (二)各系统疾病动物模型 是指与人类各系统疾病相应的动物型。如心血管、呼吸、消化、造血、泌尿、生殖、内分泌、神经、运动等系统疾病模型,还包括各种传染病、寄生虫病、地方病、维生素缺乏病、物理损伤性疾病、职业病和化学中毒性疾病的动物模型。
生物医学研究的进展常常依赖于使用动物模型作为实验假说和临床假说二者的试验基础。人类各种疾病的发生发展是十分复杂的,要深入探讨其疾病的发病机理及疗效机理不能也不应该在病人身上进行。可以通过对动物各种疾病和生命现象的研究,进而推用到人类,探索人类生命的奥秘,以控制人类的疾病的衰老 ,延长人类的寿命。人类疾病的动物模型(AnimalModelofHumanDiseases)是生物医学科学研究中所建立的具有人类疾病模似性表现的动物实验对象和材料。使用动物模型是现代生物医学研究中的一个极为重要的实验方法和手段,有助于更方便、更有效地认识人类疾病的发生、发展规律和研究防治措施。长久以来人们发现,以人本身作为实验对象来推动医学的发展是困难的,临床所积累的经验不仅在时间和空间上存在着局限性,许多实验在道义上和方法学上还受到种种限制。而动物模型的吸引力就在于它克服了这些不足点,其在生物医学研究中所起到的独特作用,正受到越来越多的科技工作者的重视。动物模型的优越性主要表现在以下几下方面。(一)避免了在人身上进行实验所带来的风险临床上对外伤、中毒、肿痛病因等研究是有一定困难的,甚至是不可能的,如急性和慢性呼
网络 四、哺乳纲 这一纲的动物,其基础生物学与人类比较接近,是实验动物的主要来源,有些动物已经实验动物化。个体比较均一,控制了微生物的感染,遗传背景清楚,并能商品化供应。成为科研、检验、生物制品等工作的重要资源。 (一)啮齿目小鼠、大鼠、豚鼠、地鼠、长爪沙鼠、棉鼠。 1.小鼠 是最常用的实验动物之一。现有近交系388种,突变系小鼠143种,远交系小鼠118种。小鼠个体小,繁殖周期短,产仔多,容易获得,饲养管理较容易。选择使用时宜注意品系生物学特性和用途。常用于药物,抗菌素的筛选,半数致死量的测定,药物效价的比较等。肿瘤的诱发,保种,传代,发病机理和治疗的研究。还用于计划生育、寄生虫病、病毒学、免疫学、血液学的研究。 ⑴上消化道肿瘤、腺胃癌、肝癌、肺癌、肺腺癌、宫颈癌、皮肤癌、肉瘤、网状细胞肉瘤、 白血病 。 ⑵心室纤颤。 ⑶慢性支气管炎,实验性肺纤维化。 ⑷肝炎,中毒性肝炎――肝坏死,肝硬死,胰腺炎。 ⑸烧伤,
网络 三、鸟纲 鸡、鸽等与人类的关系远。鸡的体温较高(38℃),无汗腺、听觉敏感。鸡胚是病毒学研究、制造牛痘苗、麻疹疫苗等生物制品的原材料。鸡血易凝,可供凝血试验。鸡为杂食动物,有自发性的动脉粥样硬化。可作实验模型。去势的雄鸡的可作性激素的研究。 鸽的听觉视觉非常发达、定向能力好、姿势平衡敏捷。破坏半规管后肌肉紧张失调。姿势失去平衡。不同品系的鸽子对高胆固醇膳食反应不同。Show Raeers和Racing Homers两个品系不易形成动脉粥样硬化。 (一)鸡 1.高血脂症,动脉粥样硬化模型。 2.性激素的研究。 3.鸡胚作病毒试验和疫苗制造原材料,还可进行肿瘤、内分泌、营养、药理、组织移植胚胎、毒理、畸胎等研究。 4.血凝试验。 5.生理学、维生素研究。代谢和遗传研究。 6.鸡红细胞还用免疫学试验。 (二)鸽 1.高血脂,动脉粥样硬化和抗动脉粥样硬化研究。 2.迷路与姿势关系实验,半规管破坏后姿势失调。 3.大脑半球
网络 五、呼吸系统药理实验中的选择与应用 (一)镇咳药的筛选实验 豚鼠对化学刺激物或机械刺激都很敏感,刺激后能诱发咳嗽;刺激其喉上神经亦能引起咳嗽,加之一般实验室较易得到,因此,豚鼠是筛选镇咳药最常用的动物。猫的生理条件下很少咳嗽,但受机械刺激或化学刺激后易诱发咳嗽,而猫较豚鼠难得,故猫选用于刺激喉上神经诱发咳嗽,在初筛的基础上,进一步肯定药物的镇咳作用。狗不论在清醒或麻醉条件下,化学、机械,电等刺激胸膜、气管粘膜或颈部迷走神经均能诱发咳嗽;狗对反复应用化学刺激所引起的咳嗽反应较其他动物变异少,故特别适用于观察药物的镇咳作用及持续时间。但狗从经济上和来源上较豚鼠和猫都昂贵、困难,只能用于进一步肯定药物的镇咳作用。 兔对化学刺激或电刺激不敏感,刺激后诱发喷嚏的机会较咳嗽为多,故兔很少用于筛选镇咳药。小白鼠和大白鼠用化学刺激虽能诱发咳嗽,但喷嚏和咳嗽动作很难区别,变异较大,特别是反复刺激时变异更大,实验可靠性较差。根据国内有关单位的经验,认为小白鼠作为初筛镇咳药的动物是可取的。
网络 四、消化系统药理实验中的选择与应用 (一)消化系统分泌实验 1.胃液分泌实验 胃液收集常选用狗和大白鼠。由狗右侧嘴角插入胃管收集胃液,大白鼠则需剖腹,从幽门端向胃内插入一直径约3mm的塑料管,在紧靠幽门处结扎固定,以收集胃液,可进行胃酸的测定和胃蛋白酶的测定。 2.胰液分泌实验 胰液收集可选用狗、兔或大白鼠。在全麻下进行手术,狗在主胰管开口十二指肠降部,距幽门12cm左右处,要将十二指肠翻转,在其背面即可找到。兔的胰腺很分散,胰管位于十二指肠的升段,距离幽门约17cm左右处。分别向主胰管内插入细导管收集胰液。大白鼠的胰管与胆管汇集于一个总管,在其入肠处插管固定,并在近肝门处结扎和另行插管,就可分别收集到胆汁和胰液。大白鼠的胰液很少,插入内径约0.5mm的透明导管后,以胰液充盈的长度作为观察胰液分泌的指标。慢性实验时可选用狗作胰瘘手术后收集胰液。 3.胆汁分泌实验为了观察某些药物对泌胆、排胆以及存在于胆系内结石的影响,需要研究用药前后胆汁流量及其成分的变化。胆汁可分别