佚名 蛋白多糖分子大,具高度亲水性,对保持结缔组织水分及与组织间物质交换均有重要作用。例如软骨组织中胶原纤维排列成网格状,网格间隙中填充蛋白多糖,因其有高度亲水性,吸附大量水份在其中,当软骨受压时,水分可被挤压出去,而减压后又可重吸进来。关节软骨无血管供应,其营养物质的交换主要靠运动产生压力变化使液体流动。由此可以解释长期不运动导致关节软骨的萎缩。 蛋白多糖的糖链上含有较多的酸性基团,对于细胞外液中Ca++、Mg++、K+、Na+等阳离子有较大的亲和力,因此能调节这些阳离子在组织中的分布。 蛋白多糖分子巨大,有较大的粘滞性,附着于组织表面,能缓冲组织之间的机械磨擦,因而具有润滑、保护作用。例如关节液中的蛋白多糖有润滑关节面的作用。类风湿关节炎患者,关节液中蛋白多糖减少,失去原有润滑作用,因而关节面易被破坏。 蛋白多糖与创伤的愈合亦有密切关系。皮肤创伤后的肉芽形成过程中,通常先有糖胺多糖的增生,进而促进胶原纤维的合成,其机理尚不清楚。近年来发现蛋白多糖可调节某些蛋白生长因子的作用
佚名 结缔组织基质中的蛋白多糖主要受组织蛋白酶D等的作用,部分肽链水解产生的带多糖链的小片段可被细胞吞噬,进而在溶酶体中逐步水解成各种单糖及其衍生物。因此,溶酶体是糖胺多糖分解的主要场所。 图13-5 透明质酸的水解 溶酶体中分解糖胺多糖的酶包括内切糖苷酶、外切糖苷酶及硫酸酯酶等。如图13-5所示透明质酸的水解过程:首先透明质酸酶(hyaluronidase)为一种内切酶,能水解透明质酸、硫酸软骨素A和C中的β-N-乙酰氨基已糖糖苷键,产生主要为四糖或六糖的寡糖。随后再由β-葡萄糖醛酸酶及β-N-乙酰氨基葡萄糖苷酶等外切酶进一步水解,成为单糖及其衍生物。 大多数糖胺多糖都含有硫酸基团。溶酶体中也存在多种硫酸酯酶,能水解各种硫酸酯键。有些糖苷酶有很强的底物特异性、不能水解带硫酸基的寡糖链,因此,硫酸酯酶的先天性缺乏会引起糖胺多糖分解障碍,导致粘多糖症(mucoplysaccharidoses)。
佚名 单个的Ⅰ型胶原分子分子量约285kD,宽14A,长约3000A。由三条多肽链组成。哺乳动物个体中有30种不同的多肽链构成16种不同的胶原,其中最常见的列于表13-3中。 表13-3 胶原的主要类型 类型 链组成 分布 Type Chain Composition Distribution Ⅰ [a1(Ⅰ)]2a2(I) 皮肤、骨、肌腱、血管、角膜 Ⅱ [a1(Ⅱ)]3 软骨、椎间盘 Ⅲ [al(Ⅲ)]3 血管、新生儿皮肤 图13-6 胶原的右手超螺旋结构 胶原蛋白的氨基酸组成有如下特征:①甘氨酸几乎占总氨基酸残基的三分之一,即每隔两个
佚名 结缔组织中的原胶原分子主要由成纤维细胞合成,软骨中胶原由软骨细胞合成,骨胶原来自成骨细胞,基底膜中胶原则由上皮或内皮细胞合成。胶原的生物合成可分为细胞内和细胞外两大阶段。 图13-8 胶原结构示意图 1.细胞内合成阶段 在结缔组织细胞中,首先是按蛋白质合成的原则先合成一条很长的,约1400个氨基酸残基的肽链,称为溶胶原蛋白,而后转入内质网中进行羟基化和糖基化修饰。 (1)羟基化修饰 胶原分子组成中含有羟脯氨酸和羟赖氨酸,这两种氨基酸并无遗传密码、反密码及tRNA引导入肽链,而是在内质网中,由脯氨酸、赖氨酸残基经羟化生成的。由脯氨酸羟化酶(prolyl hydroxylase)和赖氨酸羟化酶(lysyl hydroxylase)催化,此酶为加单氧酶,需Fe++和维生素C为辅因子,α-酮戊二酸作辅底物。如脯氨酸的羟化反应: 此羟化反应中需分子氧,缺氧会妨碍胶原的生成,因而缺氧可使伤口愈合延迟。而维生素C是维持羟化酶活性所必需的,缺乏维生素C,胶原合成
佚名 胶原纤维由于广泛的共价交联,其结构稳定,不易被一般蛋白酶水解。体内有特异作用于胶原的胶原酶(calagenase),对其分解起关键作用。此酶在N�嗽?/4处切断原胶原,切断后的碎片可自动变性,经细胞外非特异性蛋白酶及肽酶水解或被细胞吞噬后由溶酶体酶进一步分解,形成小分子寡肽或游离氨基酸。 胶原酶在某些修复或再生组织如分娩后子宫、重建的骨组织以及愈合的伤口等含量较高,Ca++为其激活剂。血清中α2巨球蛋白能与胶原酶结合而抑制其活性。胶原酶对温度十分敏感,36℃时酶活性比30℃大10倍。炎症局部温度升高,可能因此加速胶原分解。 胶原分解后产生的寡肽及氨基酸中均含有羟脯氨酸,这在其它蛋白分解产物中少见。因而测定尿中羟脯氨酸或含羟脯氨酸的短肽的含量,可作为判断体内胶原分解的指标。
佚名 弹性蛋白构成弹性纤维,弹性纤维是有橡皮样弹性的纤维,能被拉长数倍,并可恢复原样,它是结缔组织弹性的主要因素。弹性蛋白分布没有胶原蛋白广泛,但在组织内也大量存在,如富有弹性的组织,肺、大动脉、某些韧带、皮肤及耳部软骨等。 弹性蛋白中疏水性氨基酸含量高达95%,其中有许多是甘氨酸、脯氨酸和亮氨酸。弹性蛋白初合成时为水溶性单体,分子量为70000,称为原弹性蛋白(tropoelastin),在修饰中部分脯氨酸羟化生成羟脯氨酸。原弹性蛋白从细胞中分泌出来后,部分赖氨酸经氧化酶催化氧化为醛基,并与另外的赖氨酸的ε-氨基缩合成吡啶衍生物,称为链素(图13-10)。� 图13-10 链素 交联后使弹性蛋白卷曲,从而具有弹性、并且使弹性蛋白溶解性降低,稳定性增高。
佚名 生长激素在促进蛋白质合成的同时亦促进蛋白多糖和胶原的合成。动物实验表明,生长激素的促软骨生长作用,至少部分是通过生长调节素A(somatomedin A)而间接作用的,它刺激软骨细胞的增殖和硫酸盐掺入蛋白多糖,所以又称“硫酸化因子”。 甲状腺素促进蛋白多糖的分解,甲状腺功能低下时常出现粘液性水肿,与蛋白多糖分解减弱在皮下蓄积有关。 睾丸酮和雌激素均可促进透明质酸的合成,而肾上腺皮质激素能稳定溶酶体,减少溶酶体酶的释放,从而维持蛋白多糖的稳定。胰岛素可促进糖胺多糖的合成, 糖尿病 人创伤愈合缓慢、易感染及并发血管退行性变等可能与此有关。糖皮质激素对胶原蛋白的合成及分解均有影响,长期使用可产生皮肤变薄、骨质疏松以及延缓创伤愈合等副作用,用药时应加以注意。
佚名 脑的活动瞬息万变,需要大量能量的及时供应。脑细胞本身的生物高分子(核酸及蛋白质)的合成以及神经递质的合成与释放固然都是耗能的过程,但这些尚不足以说明为什么脑细胞的功能活动较之其他组织细胞要消耗更多的能量。脑的能量消耗主要在于经常不断地把Na+泵出细胞外,使去极化(depolarization)后的膜迅速恢复膜电位,以维持神经的兴奋和传导。脑的代谢率(metabolic rate)是很高的,它可以用单位时间的耗氧量(oxygen consumption)和基质消耗量或产物生成量作指标来表示,如表14-1。� 表14-1 正常青年男子的脑血流量和代谢率 速率 每百克脑组织 全脑 血流量(ml/分) 57 798 耗氧量(ml/分) 3.5 49
佚名 除脂肪组织外,脑是全身含脂类最多的组织,但脂肪组织主要含甘油三酯(贮存脂),而脑组织中的脂类几乎全是类脂。脑干重的1/2是脂类,这是就全脑平均而言,如果分别测定脑灰质和脑白质的化学成分,就会发现灰质含水份和蛋白质较多,脂类仅占干重的1/3;而白质中的脂类含量较多,约占干重的55%。 表14-2 正常成人脑的脂类组成 成分 灰质 白质 温重(%) 干重(%) 总脂(%) 温重(%) 干重(%) 总脂(%) 水 81.9 71.0 总脂 5.9 32.7 100 15.6 54.9 100
佚名 脑的游离氨基酸组成与血浆有很明显的差别,这是由于血脑屏障的特点和脑本身氨基酸代谢特点造成的。脑和血浆中某些游离氨基酸的含量对比如表14-3。� 表14-3 人脑和血浆中某些游离氨基酸的含量 氨基酸 脑 血浆 微克分子/克 微克分子/毫升 谷氨酸 10.6 0.05 N-乙酰天门冬氨酸 5.7 - 谷氨酰胺 4.3 0.7 γ-氨基丁酸 2.3 - 天门冬氨酸 2.2 0.01 色氨酸 0.05 0.05
佚名 神经系统内存在着许多化学物质,但它们不一定都是递质(transmitter)。作为神经递质,必须具备几个基本条件:(1)被认为是递质的物质应特异性地存在于以该物质为递质的神经元中,而且,在这种神经元的末梢有合成该递质的酶系统;(2)递质在神经末梢内合成以后,通常是集中贮存在囊泡(vesicle)内,这样可以防止被胞浆内的其它酶所破坏;(3)当神经冲动到来时,神经末梢内的递质就自突触前膜释放入突触间隙;(4)递质通过突触间隙,作用于突触后膜的叫做受体的特殊部位,引起突触后膜离子通透性改变以及电位变化;(5)神经递质在发挥上述效应后,其作用应该迅速终止,以保证突触传递的高度灵活。作用的终止有几种方式:一是被酶所水解,失去活性;其次是被突触前膜“重摄取”,或是一部分为后膜所摄取;也有的部分进入血循环,在血中一部分被酶所降解破坏。 目前已知的神经递质种类很多,但主要的有乙酰胆硷、儿茶酚胺类(去甲肾上腺素和多巴胺)、5�羟色胺、GABA、某些氨基酸和寡肽等。
佚名 脑内到处都存在着氨基酸。过去只认为它们是合成蛋白质的原料,或是蛋白质分解的产物。近年来,注意到某些氨基酸在中枢的突触传递中起着递质的作用。而且发现,凡是中性氨基酸,如γ�氨基丁酸、甘氨酸、β�丙氨酸等对中枢神经元表现抑制作用,而酸性氨基酸如谷氨酸、天门冬氨酸则表现为兴奋作用。 有一些小分子肽类在中枢神经系统中也具有神经递质同的作用。1975年发现的脑啡肽(enkephalin)是由五个氨基酸残基构成的寡肽,从猪脑中分离出来的脑啡肽又分为两型。 蛋氨酸型(蛋脑啡肽,Met-enkephalin): H-酪-甘-甘-苯丙-蛋-OH 亮氨酸型(亮脑啡肽,Leu-enkephalin) H-酪-甘-甘-苯丙-蛋-OH 它们是由脑细胞内合成的具有吗啡样作用的肽,故名脑啡肽。已知吗啡(morphine)要先与脑内的吗啡受体结合才能产生镇痛、欣快作用,而脑啡肽之所以有吗啡样作用也是因为它们能与吗啡受体结合。吗啡是外来的物质,而脑啡肽是内源性的。此外,已知脑内还有一些能
佚名 分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正与其它学科广泛交叉与渗透的重要前沿领域。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广泛的前景。 所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。简明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。
佚名 分子生物学主要包含以下三部分研究内容: 1 核酸的分子生物学 核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来的迅速发展。该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核/ 基因组 的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。 2 蛋白质的分子生物学 蛋白质的分子生物学研究执行各种生命功能的主要大分子――蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3 细胞
佚名 分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以纛信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。 生物化学与分子生物学关系最为密切。两者同在我国教委和科委颁布的一个二级学科中,称为“生物化学与分子生物学”,但两者还是区别的。生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。分子生物学则着重阐明生命的本质――主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。《国际生物化学学会》和《中国生物化学学会》现昀已改名为《国际生物化学与分子生物学学会》和《中国生物化学与分子生物学学会》。 细胞生物学与分子生物学关系也十分密切。传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。细胞作为生物体基本的构
佚名 分子生物学的发展大致可分为三个阶段。 (一)准备和酝酿阶段 19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破。 确定了蛋白质是生命的主要物质基础。 19世纪末Buchner兄弟证明 酵母 无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、共同酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson
佚名 1868年,瑞士的内科医生Friedrich Miescher从外科医院包扎伤口的绷带上的脓细胞核中提取到一种富含磷元素的酸性化合物,将其称为核质(nuclein);后来他又从鲭鱼精子中分离出类似的物质,并指出它是由一种碱性蛋白质与一种酸性物质组成的,此酸性物质即是现在所知的核酸(nucleic acid)。1944年Oswald Avery,Colin Macleod和Maclyn McCarty发现,一种有夹膜、具致病性的肺炎球菌中提取的核酸�NA(deoxyribonucleic acid,脱氧核糖核酸),可使另一种无夹膜,不具致病性的肺炎球菌的遗传性状发生改变,转变为有夹膜,具致病性的肺炎球菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。该项实验彻底纠正了蛋白质携带遗传信息这一错误认识,确立了核酸是遗传物质的重要地位;DNA遗传作用的进一步肯定来自Alfred Hershey和Martha Chase对一个感染大肠杆菌的病毒的研究。即用放谢性同位素32
佚名 核酸是生物体内的高分子化合物,包括DNA和RNA两大类。 一、元素组成 组成核酸的元素有C、H、O、N、P等,与蛋白质比较,其组成上有两个特点:一是核酸一般不含元素S,二是核酸中P元素的含量较多并且恒定,约占9~10%。因此,核酸定量测定的经典方法,是以测定P含量来代表核酸量。 二、化学组成与基本单位 核酸经水解可得到很多核苷酸,因此核苷酸是核酸的基本单位。核酸就是由很多单核苷酸聚合形成的多聚核苷酸。核苷酸可被水解产生核苷和磷酸,核苷还可再进一步水解,产生戊糖和含氮碱基(图15-1)。 图15-1 核酸的组成� 核苷酸中的碱基均为含氮杂环化合物,它们分别属于嘌呤衍生物和嘧啶衍生物。核苷酸中的嘌呤碱(purine)主要是鸟嘌呤(guanine,G)和腺嘌呤(adenine,A),嘧啶碱(pyrimidine)主要是胞嘧啶(cytosine,C)、尿嘧啶(uracil,U)和胸腺嘧啶(thymine,T)。DNA和RNA都含有鸟嘌呤(G)、腺嘌呤(A
佚名 自然界绝大多数生物体的遗传信息贮存在DNA的核苷酸排列顺序中。DNA是巨大的生物高分子,一般将细胞内遗传信息的携带者�染色体所包含的DNA总体称为 基因组 (genome)。同一物种的基因组DNA含量总是恒定的,不同物种间基因组大小和复杂程度则差异极大,一般讲,进化程度越高的生物体其基因组构成越大、越复杂,见(表15-2)。� 表15-2 某些有代表性的生物体内DNA大小 分子量 碱基对(bp) 千碱基对(kb) 最简单的微生物 SV40病毒 3×106 5×103 5 λ噬菌体 3.4×107 5×104 50 细菌 大肠杆菌
佚名 随着对基因认识的不断深入,发现在同种生物的不同个体之间,尽管其蛋白质产物的结构和功能完全相同或仅存在着细微的差异,但在DNA水平却存在着差异,尤其在不编码蛋白质的区域以及没有重要调节功能的区域表现更为突出。这种不影响生物体表型的DNA突变被称为中性突变。 分子生物学技术的不断发展已使得从DNA水平直接分析这类突变成为可能。 目前应用较多且成熟的方法是限制性片段长度多态性(Restriction fragment length polymorphism,RFLP)。即当DNA序列中某一个碱基发生突变,使突变所在部位的DNA序列获得或丢失某种限制性核酸内切酶位点;或当DNA分子内部发生较大的顺序突变如缺失、重复、插入,或DNA高变区内某串联重复顺序的拷贝数不同致使其两侧限制性核酸内切酶位点发生相对位移时,利用相应的限制性核酸内切酶消化此DNA,便会产生与正常不同的限制性片段。这样,在同种生物的不同个体中就会出现不同长度的限制性片段类型。 因为DNA的中性突变常以孟德尔显性遗传