甲醇酵母基因表达系统是一种最近发展迅速的外源蛋白质生产系统。甲醇酵母是可利用甲醇作为唯一碳源的酵母,主要有H.Polymorpha、Candida Bodinii、Pichia Pastoris 三种,其中Pichia Pastoris 作为基因表达系统使用得最多、最广泛[1] 。与以往的基因表达系统相比,它具有无可匹敌的高表达特性,已被认为是最具有发展前景的生产蛋白质的工具之一。 1. 外源蛋白质的基因在甲醇酵母中的高效表达 目前已有多种蛋白质的基因在该表达系统中克隆成功,包括蛋白酶、酶抑制剂、受体、单链抗体等(表1)。尽管各种外源蛋白质产生的水平不一,但各种蛋白质在甲醇酵母中的产生水平均为在细菌、昆虫或哺乳动物等表达系统中产量的10~100倍[2] 。如表皮生长因子(EGF)在酿酒酵母中的产量为7.4mg/L,而在甲醇酵母中为450mg/L,提高了60倍[3] 。椐报道,外源蛋白质在甲醇酵母中的产量最高可达12g/L[9] 。 表1 外源蛋白质在甲醇酵母中的高效产生 外源蛋白质
(一)双缩脲测定法 1.原理 蛋白质中的肽键有双缩脲反应,在碱性溶液中与二价铜离子形成蓝紫色的络合物,在一定的范围内,颜色的深浅与蛋白质的含量成正比。此法特异性强,游离的氨基酸、小肽和核酸均不产生这种反应,但此法不够敏感,仅能测出毫克水平。 2.试剂配制 硫酸铜(CuSO4 ·5H2 O) 1.50g 酒石酸钾钠 5.00g H2 O 500.0ml 10%氢氧化钠(不含硫酸钠) 300ml H2 O 加至 1 000ml 此溶液可长期保存,如产生暗红色沉淀,则应废弃重配。 3.标准曲线的制备 ⑴ 准确称取牛血清白蛋白1.0g(必要时须首先采用凯氏定氮法测定牛血清白蛋白制品中实际纯蛋白含量,然后换算),以生理盐水配成1%的浓度。 ⑵ 将1%的牛血清白蛋白按表8-1进行稀释: 表8-1 牛血清白蛋白稀释方法表 成 分 试 管 号
气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(<10μ m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~ 10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏
选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。 微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物
(一)、仪器设备 英国 Thermo Hybaid 原位 PCR 仪。 (二)、操作流程 1 、原位 PCR 步骤 1 )预处理: ( 1 )切片常规脱蜡; ( 2 ) 0.2mol/L HCl 处理 10min ; ( 3 ) 5 μ g/ml 蛋白酶 K 消化组织 37 ℃ 10min ; ( 4 ) Nase 消化组织 37 ℃ 30min ; ( 5 )梯度酒精脱水,室温干燥。 2 )原位扩增: ( 1 )切片滴加特异性序列引物 30 μ LPCR 扩增反应液,覆盖硅化盖玻片,石蜡油封边; ( 2 ) PCR 热循环: 94 ℃, 1min ; 55 ℃, 1min ; 72 ℃, 1.5min ,共 25 ~ 30 个循环, 72 ℃延伸 10min ; ( 3 )氯仿洗去盖玻片, 4 %多聚甲醛后固定 10min ,梯度酒精脱水,干燥。 3) 原位杂交: ( 1 )加地高辛标记探针的杂交液, 98 ℃变性 10min , -20 ℃退火 5min , 42 ℃杂交过夜。 (
学习和掌握限制性内切酶的特性、酶解和琼脂糖凝胶电泳的操作方法,理解限制性内切酶是DNA重组技术的关键工具,琼脂糖凝胶电泳是分离鉴定DNA片段的有效方法。 限制性核酸内切酶: 是一类能识别双链DNA分子特异性核酸序列的DNA水解酶。是体外剪切基因片段的重要工具,所以常常与核酸聚合酶、连接酶以及末端修饰酶等一起称为工具酶。 琼脂糖凝胶电泳: 是利用琼脂糖溶化再凝固后能形成带有一定孔隙的固体基质的特性,其密度取决于琼脂糖的浓度。在电场的作用下及中性pH的缓冲条件下带负电的核酸分子就可以向阳极迁移。琼脂糖凝的浓度影响给定大小的线状DNA的迁移率,因此采用不同浓度的凝胶可以分离不同大小范围的DNA片段。 EB: 即3,8-二氨基-5-乙基-6-苯基菲锭溴盐, (Ethidium Bromide)。它能够插入DNA分子中的碱基对之间而与DNA结合。由于EB分子的插入,在紫外光的照射下,凝胶电泳中的DNA条带呈现出红色荧光,易于检测。可以检测10ng 的DNA。 质粒 pCMV-Myc-T10 NEB 标准分子量片段(1kb DNA Ladder) EcoR1
关键词 :蛋白质复性;环糊精;分子伴侣 重组DNA技术为大规模生产目标蛋白质提供了崭新的途径。但人们在分离纯化基因工程表达产物时却遇到了意想不到的困难:很多利用大肠杆菌为宿主细胞的外源基因表达产物如尿激酶、人胰岛素、人生长激素、白介素-6、人γ-干扰素等,不仅不能分泌到细胞外,反而在细胞内聚集成没有生物活性的直径约0.1~3.0μm的固体颗粒棗包含体[1]。这些基因表达产物的一级结构(即氨基酸序列)虽然正确,而其立体结构是错误的,所以没有生物活性。因此,为获得天然状态的目标产物,必须在分离回收包含体后,溶解包含体并设法使其中的目标蛋白质恢复应有的天然构象和活性。这就向生物化学家的蛋白质折叠机制研究提出了新课题。 1. 蛋白质复性机制研究 分离包含体并复性蛋白质的操作步骤并不复杂,从破碎细胞开始,然后将细胞匀浆离心,回收包含体后,加入变性剂溶解包含体,使之成为可溶性伸展态,再除去变性剂使表达产物折叠恢复天然构象及活性。但在实际研究中发现,在体外折叠时,蛋白质分子间由于存在大量错误折叠和聚合,复性效率往往很低。究其原因,蛋白质的立体结构虽然由其氨基酸顺序决
[摘要] 本文对蛋白质折叠这一古老的领域的最新发展,尤其是分子伴侣的机理作了一番探讨,对一些新观点和新的实验事实作了介绍,并对一些实验实事作了一些思考,并提出了一些自己的看法。同时预测了结构生物学及技术手段的发展趋势。 [关键字] 生物大分子 分子伴侣 蛋白质的折叠 识别 结合 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列
摘要 基因重组蛋白在大肠杆菌中表达时,由于表达量高,往往形成无生物活性的包涵体。包涵体必须经过变性和复性的过程才能获得有活性的重组蛋白。如何提高基因重组蛋白质的复性率,是生物工程技术的一个研究热点。对近年来的重组蛋白质的复性方法做一评述,为研究蛋白质折叠以及复性技术的进一步应用提供依据。 关键词 重组蛋白 包涵体 复性 二硫键 到目前为止,人们表达的重组蛋白质已有4000多种,其中用E.coli表达的蛋白质要占90%以上,尽管基因重组技术为大规模生产目标蛋白质提供了崭新的途径,然而人们在分离纯化时却遇到了意想不到的困难,即这些蛋白质在E.coli中绝大多数是以包涵体形式存在,重组蛋白不仅不能分泌到细胞外,反而在细胞内聚集成没有生物活性的直径约0.1~3.0μm的固体颗粒[1]。自从应用大肠杆菌体系表达基因工程产品以来,人们就一直期望得到高活性、高产量的重组蛋白。不可溶、无生物活性的包涵体必须经过变性、复性才能获得天然结构以及生物活性,因此应该选择一个合适的复性过程来实现蛋白质的正确折叠,获得生物活性,近年来的研究可以使复杂的疏水蛋白、多结构域蛋白、寡聚蛋白、含二硫键蛋
摘要 许多不相关的蛋白质含有相同的短肽序列却形成不同的空间构象. 结构转换广泛存在于蛋白质折叠和功能过程中, 具有重要的生物学意义. 综述了Serpin和EF-Tu的失活、血细胞凝集素的激活、蛋白酶成熟、亚基装配和蛋白质淀粉样化等过程中肽链同源肽段的结构转换模式, 并讨论了它在理解蛋白质折叠机理和“构象病”病因中的应用. 关键词 蛋白质折叠, 结构转换, α/β转换, 淀粉样化 蛋白质的空间结构是体现生物功能的基础, 蛋白质折叠则是形成空间结构的过程. 早在70年代, Anfinsen[1]就提出了蛋白质一级结构决定其高级结构的著名学说, 认为蛋白质折叠是受热力学因素控制的. 天然蛋白质处于能量最低(即热力学最稳定)的状态. 一般来说, 天然蛋白质的结构是相对稳定的, 结构的稳定性也是其保持生物个体功能和物种的相对稳定所要求的. 蛋白质担负着复杂的生化反应, 同时在生物合成以后, 蛋白质本身也经历着繁杂的生理过程. 蛋白质自翻译以后, 还需进行一系列的翻译后过程, 包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等. 这些过程似乎都伴随着蛋
摘要 综述了包涵体形成、包涵体分离和溶解、包涵体折叠复性的方法、复性产率低下的主要因素以及通过分子伴侣、低分子量添加物等的应用而提高了蛋白质复性产率。 关键词 包涵体 蛋白质 复性 Abstract Strategies for decreasing the formation of inclusion bodies, isolation and resolution of inclusion bodies, refolding of inclusion body proteins and the cause of decreased refolding yields were included. Renaturation yield of recombinant protein have been improved by using some additives, such as molecular chaperone, small molecules. Key words inclusion body , protein , renaturation
一、放射性同位素的特点 众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同 时放射出这几种射线。核衰变的速度不受温度、压力、电磁场等外界条件的影响,也 不受元素所处状态的影响,只和时间有关。放射性同位素衰变的快慢,通常用“半衰 期”来表示。半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一 半时所需要的时间。如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32 原子,经过14.3天后,只剩下50万个了。半衰期越长,说明衰变得越慢,半衰期越 短,说明衰变得越快。半衰期是放射性同位素的一特征常数,不同的放射性同位素有 不同的半衰期,衰变的时候放射出射线的种类和数量也不同。 常用同位素的特征 同位素 符号 半衰期 β射线能量(MeV) 氢-3 3H 12.3年 0.0
放射性的来源扔天然的放射性和人工放射性两类。生活在地球上的人们经常受到这两种放射性的照射,天然放射性即木底照射是不可避免的,而人工放射性的应用产生了放射性危害,因而引起放射性防护问题。 一、放射性的危害必及防护的必要性 随着放射同位素的广泛应用,越来越多的人们认识到放射性对机体造成的损害随着放射照射量的增加而增大,大剂量的放射性会造成被照射部位的组织损伤,并导致癌变,即使是小剂量的放射性,尤其是长时间的小剂量照射蓄积也会导致照射器官组织诱发癌变,并会使受照射的生殖细胞发生遗传缺陷。放射性对人体的影响主极随机效应和非随机效应。随机效应(stochastic effect)指放射性对机体至癌或遗传效应的发生几率,此发生几率与照射剂量的大小有关,而随机性效应的严重程度与剂量有关,如放射性致癌、放射性诱发各种遗传疾病均属随机性效应。非随机性效应(non-stochastic effect)是机体受照射后在短期内就出现的急性效应,以及经过一定时间后发现的发育功能低下、白内障和造血机能障碍等等。其严重程度随受照射剂量不同而变化,存在着明确的剂量阈值,这种效应是随着受照射剂量的增加,而
仪器中文名称 仪器英文名称 英文缩写 原子发射光谱仪 Atomic Emission Spectrometer AES 电感偶合等离子体发射光谱仪 Inductive Coupled Plasma Emission Spectrometer ICP 直流等离子体发射光谱仪 Direct Current Plasma Emission Spectrometer DCP 紫外-可见光分光光度计 UV-Visible Spectrophotometer UV-Vis 微波等离子体光谱仪 Microwave Inductive Plasma Emission Spectrometer MIP 原子吸收光谱仪 Atomic Absorption Spectroscopy AAS 原子荧光光谱仪 Atomic Fluorescence Spectroscopy AFS 傅里叶变换红外光谱仪 FT-IR Spectrometer FTIR 傅里叶变换拉曼光谱仪 FT-Raman Spectrometer FTIR-Raman 气相色谱仪 Gas Chromatograph G
放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为探测器(probe)。测量射线有各种不同的仪器和方法,正如麦凯在1953年所说:“每当物理学家观察到一种由原子粒子引起的新效应,他都试图利用这种新效应制成一种探测器”。一般将探测器分为两大类,一是“径迹型”探测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能粒子物理研究领域。二是“信号型”探测器,包括电离计数器,正比计数器,盖革计数管,闪烁计数器,半导体计数器和契伦科夫计数器等,这些信号型探测器在低能核物理、辐射化学、生物学、生物化学和分子生物学以及地质学等领域越来越得到广泛地应用,尤其是闪烁计数器是生物化学和分子生物学研究中的必备仪器之一。 一、闪烁型探测器 1.探测原理 闪烁型探测器由闪烁体,光电倍增管,电源和放大器-分析器-定标器系统组成,现代闪烁探测器往往配备有计算机系统来处理测量结果。当射线通过闪烁体时,闪烁体被射线电离、激发,并
基因组序列的迅速获得推动了一门新兴学科——功能基因组学的发展,这一学科重点关注基因功能的变化。扩增性片段长度多态性(Amplified restriction fragment length polymorphism,AFLP)分析以及反向遗传学都是功能基因组学的重要组成部分。 传统的反向遗传学,例如用转座子(transposon)敲除特定基因,虽然可以准确测定表型,但需要进行耗时的转基因或复杂的组织培养。而且由于这种基因敲除的方法将整个基因敲除,无法观察到活性基因功能部分缺失的结果。 为克服此基因敲除方法的局限性,进一步获得关于活性基因突变的信息,Fred Hutchinson癌症研究中心的研究者们发明了一种定向诱导基因组局部突变(TILLING: Targeting Induced Local Lesions In Genomes)技术。该方法具有简单高效的特点,它利用化学突变方法来获得所有基因的传统的点突变等位基因系列。对那些表型分析时会牵涉到亚致死等位基因的重要基因,TILLING的方法具有其独特的优势。随着TILLING方法有效应用到越来越多的生物种类,如果蝇
同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。 一、同位素示踪法基本原理和特点 同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性质。因此,就可以用同位素作为一种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。利用放射性同位素不断地放出特征射线的核物理性质,就可以用核探测器随时追踪它在体内或体外的位置、数量及其转变等,稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪,气相层析仪,核磁共振等质量分析仪器来测定。放射性同位素和稳定性同位素都可作为示踪剂
当目标蛋白的物理特性如分子量、等电点等都不清楚时,可用PAGE电泳方法或层析方法加以测定。分离范围广阔的Superose HR适合测定未知蛋白的分子量。用少量离子交换介质在多个含不同pH缓冲液的试管中,可简单地测出pI, 并确定纯化用缓冲液的最佳pH。 选择层析方法 在对目标蛋白的特性或样品成分不太了解,可尝试几种不同的纯化方法: 一、使用最通用的凝胶过滤方法,选择分离范围广泛的介质如Superose、Sephacryl HR根据分子量将样品分成不同组份。 二、用含专一配体或抗体的亲和层析介质结合目标蛋白。也可用各种活化偶联介质偶联目标蛋白的底物、受体等自制亲和介质,再用以结合目标蛋白。一部即可得到高纯度样品。 三、大体积的样品、常使用离子交换层析加以浓缩及粗纯化。高盐洗脱的样品,可再用疏水层析纯化。疏水层析利用高盐吸附、低盐洗脱的原理,洗脱样品又可直接上离子交换等吸附性层析。两种方法常被交替使用于纯化流程中。 纯化大量粗品 处理大量原液时,为避免堵塞柱子,一般使用Sepharose Big Beads、SepharoseXL、Sepharose Fast F
Southern Blot Flow 一 基因组酶切和电泳 在200 μl 微量离心管中加入: 25 μl DNA样品(约10μg), 3μl 限制性内切酶(MBI,10 U/ μl) 5 μl 相应的10×buffer, 补水到50μl。 然后加一滴矿物油覆盖, 稍微离心后放于37℃水浴8-12小时。酶切完后,取5μl 酶切DNA样品于0.8%的琼脂糖凝胶上检测酶是否充分。如果酶切充分,灌制0.8%的agrose胶,加入上样buffer后,在25—30V稳压电泳12—16hrs。 注意:在southern杂交中对,DNA的质量要求较高,否则酶切不完全导致失败。 二 转膜 1 用0.2MHCl 脱嘌呤处理,偶尔轻轻振荡至溴酚蓝完全变成黄色,大约需要15~30分钟。然后用水漂洗凝胶2~3次,将水倒尽,加入碱变性液,偶尔轻轻振荡至溴酚蓝完全恢复到原来的蓝色(大约需要20~30分钟)。 注意:此方法对酶切后目标片段大于15kb时用,如果小于15kb最好不要进行脱嘌呤处理,否则容易将片段打断,导致转膜后结合不紧密。 2 取一磁盘架上一洗净玻璃板,在磁盘中倒入适量的转
研究RNA的方法有很多种,常用的如核酸保护性分析(NPA)、RT-PCR、Northern blots等等。而Northern blots曾经是应用得最广的技术之一,尽管其分辨率和操作简易性都不如前者,但Northern blots依然是检测、定量mRNA大小及在组织中表达水平的标准方法,既是能直接提供有关RNA完整性、不同的剪接信息及mRNA大小等信息的唯一方法,也是在同一张膜上直接比较同一信息在不同样品中的表达丰度的首选方法。Northern blots的操作步骤相当繁琐,且对RNase污染非常敏感,任一步操作不当都会严重影响分辨率。尽管Northern blots曾经是应用得最广的技术之一,但不同的实验室甚至不同的人往往都会根据自己的条件采用不同的方法。通常我们称《分子克隆》所书的方法为标准方法(Maniatis)。然而优化这个标准方法中的以下几个操作步骤可以使其灵敏度提高10-20倍:探针的选择、膜的选择和转移方法、杂交液的选择、甲醛还是乙二醛的选择、试剂的质量。以下从这些方面分别加以讨论。 探针的选择 Northern blots探针的来源有多样性,可