Carbohydrate‐Oligonucleotide Conjugates
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
This unit describes a strategy for attaching two mannose and two galactose residues to an oligonucleotide. This conjugation can be performed at the 5??end of the oligonucleotide sequence, using modified phosphoramidites. First, the oligonucleotide scaffold is synthesized on solid support using a DNA synthesizer, with commercially available and modified phosphoramidites. After the first ?click? reaction with a galactosylated azide derivative on solid support, the bromine atoms are replaced with azides and a second click reaction is performed with propargylated mannose either on solid support or in solution. Additionally, using a monoalkynated solid support, the conjugation with carbohydrate residues can be performed at the 3??end of the oligonucleotide according to a similar protocol. Curr. Protoc. Nucleic Acid Chem. 39:4.38.1?4.38.25. © 2009 by John Wiley & Sons, Inc.
Keywords: carbohydrate; oligonucleotide; click chemistry; conjugate; galactose; mannose
Table of Contents
- Introduction
- Reagents and Solutions
- Commentary
- Literature Cited
- Figures
- Tables
Materials
Basic Protocol 1:
Materials
Basic Protocol 2:
Materials
Basic Protocol 3:
Basic Protocol 4:
Materials
Basic Protocol 5:
Materials
Basic Protocol 6:
|
Figures
-
Figure 4.38.1 Synthesis of 1‐ O ‐(4,4′‐dimethoxytrityl)‐2‐propargyloxymethyl‐2‐methyl‐3‐ O ‐[(2‐cyanoethoxy)‐( N,N ‐diisopropylamino)phosphinyl]‐1,3‐propanediol (S.5 ) and 1‐ O ‐(4,4′‐dimethoxytrityl)‐2‐(6‐bromohexyloxymethyl)‐2‐methyl‐3‐ O ‐[(2‐cyanoethoxy)‐( N,N ‐diisopropylamino)phosphinyl]‐1,3‐propanediol (S.6 ). View Image -
Figure 4.38.2 Synthesis of 1‐ O ‐[4‐(azidomethyl)cyclohexyl‐1‐methyl]‐2,3,4,6‐tetra‐ O ‐acetyl‐β‐D ‐galactopyranoside (S.10 ). View Image -
Figure 4.38.3 Synthesis of 1‐ O ‐propargyl‐2,3,4,6‐tetra‐ O ‐acetyl‐α‐D ‐mannopyranoside (S.11 ). View Image -
Figure 4.38.4 Preparation of the monoalkynated solid support S.12 . View Image -
Figure 4.38.5 Solid‐phase synthesis of oligonucleotide S.15 bearing 2 azido functions and two galactose residues. Abbreviations: SPOS, solid‐phase oligonucleotide synthesis; NP , protected nucleoside; MW, microwave. View Image -
Figure 4.38.6 Synthesis of the heteroglycomimic oligonucleotide 5′‐conjugate S.17 using the solid‐phase strategy. View Image -
Figure 4.38.7 Synthesis of the heteroglycomimic oligonucleotide 5′‐conjugate S.17 using the “in‐solution” strategy. View Image -
Figure 4.38.8 Synthesis of the heteroglycomimic oligonucleotide 3′‐conjugate S.21 . Abbreviations: SPOS, solid‐phase oligonucleotide synthesis; MW, microwave. View Image
Videos
Literature Cited
Literature Cited | |
Bernardi, A., Arosio, D., Potenza, D., Sanchez‐Medina, I., Mari, S., Canada, F.J., and Jimenez‐Barbero, J. 2004. Intramolecular carbohydrate‐aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GMI glycomimetics for cholera toxin. Chem. Eur. J. 10:4395‐4406. | |
Bouillon, C., Meyer, A., Vidal, S., Jochum, A., Chevolot, Y., Cloarec, J.P., Praly, J.P., Vasseur, J.J., and Morvan, F. 2006. Microwave assisted “click” chemistry for the synthesis of multiple labeled‐carbohydrate oligonucleotides on solid support. J. Org. Chem. 71:4700‐4702. | |
Chevolot, Y., Bouillon, C., Vidal, S., Morvan, F., Meyer, A., Cloarec, J.P., Jochum, A., Praly, J.P., Vasseur, J.J., and Souteyrand, E. 2007. DNA‐based carbohydrate biochips: A platform for surface glyco‐engineering. Angew. Chem. Int. Ed. 46:2398‐2402. | |
D'Onofrio, J., de Champdore, M., De Napoli, L., Montesarchio, D., and Di Fabio, G. 2005. Glycomimetics as decorating motifs for oligonucleotides: Solid‐phase synthesis, stability, and hybridization properties of carbopeptoid‐oligonucleotide conjugates. Bioconjug. Chem. 16:1299‐1309. | |
Dubber, M. and Frechet, J.M.J. 2003. Solid‐phase synthesis of multivalent glycoconjugates on a DNA synthesizer. Bioconjug. Chem. 14:239‐246. | |
Hasegawa, T., Numata, M., Okumura, S., Kimura, T., Sakurai, K., and Shinkai, S. 2007. Carbohydrate‐appended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins. Org. Biomol. Chem. 5:2404‐2412. | |
Horlacher, T. and Seeberger, P.H. 2008. Carbohydrate arrays as tools for research and diagnostics. Chem. Soc. Rev. 37:1414‐1422. | |
Imberty, A., Wimmerova, M., Mitchell, E.P., and Gilboa‐Garber, N. 2004. Structures of the lectins from Pseudomonas aeruginosa: Insights into the molecular basis for host glycan recognition. Microbes Infect. 6:221‐228. | |
Katajisto, J., Heinonen, P., and Lonnberg, H. 2004a. Solid‐phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: Orthogonally protected bis(hydroxymethyl)‐N,N′‐bis(3‐hydroxypropyl)malondiamide phosphoramidite as key building block. J. Org. Chem. 69:7609‐7615. | |
Katajisto, J., Virta, P., and Lonnberg, H. 2004b. Solid‐phase synthesis of multiantennary oligonucleotide glycoconjugates utilizing on‐support oximation. Bioconjug. Chem. 15:890‐896. | |
Lundquist, J.J. and Toone, E.J. 2002. The cluster glycoside effect. Chem. Rev. 102:555‐578. | |
Matsuura, K., Hibino, M., Yamada, Y., and Kobayashi, K. 2001. Construction of glyco‐clusters by self‐organization of site‐specifically glycosylated oligonucleotides and their cooperative amplification of lectin‐recognition. J. Am. Chem. Soc. 123:357‐358. | |
Moni, L., Pourceau, G., Zhang, J., Meyer, A., Vidal, S., Souteyrand, E., Dondoni, A., Morvan, F., Chevolot, Y., Vasseur, J.J., and Marra, A. 2009. Design of triazole‐tethered glycoclusters exhibiting three different spatial arrangements and comparative study of their affinities towards PA‐IL and RCA 120 by using a DNA‐based glycoarray. Chembiochem. 10:1369‐1378. | |
Morvan, F., Meyer, A., Jochum, A., Sabin, C., Chevolot, Y., Imberty, A., Praly, J.P., Vasseur, J.J., Souteyrand, E., and Vidal, S. 2007. Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): Automated synthesis of DNA‐Based glycoclusters and binding to Pseudomonas aeruginosa lectin (PA‐IIL). Bioconjug. Chem. 18:1637‐1643. | |
Mulvey, G., Kitov, P.I., Marcato, P., Bundle, D.R., and Armstrong, G.D. 2001. Glycan mimicry as a basis for novel anti‐infective drugs. Biochimie 83:841‐847. | |
Pourceau, G., Meyer, A., Vasseur, J.J., and Morvan, F. 2009. Synthesis of mannose and galactose oligonucleotide conjugates by bi‐click chemistry. J. Org. Chem. 74:1218‐1222. | |
Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B. 2002. A stepwise huisgen cycloaddition process: Copper(I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41:2596‐2599. | |
Sabin, C., Mitchell, E.P., Pokorna, M., Gautier, C., Utille, J.P., Wimmerova, M., and Imberty, A. 2006. Binding of different monosaccharides by lectin PA‐IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X‐ray structures. FEBS Lett. 580:982‐987. | |
Seeberger, P.H. and Werz, D.B. 2007. Synthesis and medical applications of oligosaccharides. Nature 446:1046‐1051. | |
Sharon, N. and Lis, H. 2004. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 14:53R‐62R. | |
Singh, Y., Renaudet, O., Defrancq, E., and Dumy, P. 2005. Preparation of a multitopic glycopeptide‐oligonucleotide conjugate. Org. Lett. 7:1359‐1362. | |
Stahl, P.D., Rodman, J.S., Miller, M.J., and Schlesinger, P.H. 1978. Evidence for receptor‐mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc. Natl. Acad. Sci. U.S.A. 75:1399‐1403. | |
Tornoe, C.W., Christensen, C., and Meldal, M. 2002. Peptidotriazoles on solid phase: [1,2,3]‐triazoles by regiospecific copper(I)‐catalyzed 1,3‐dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67:3057‐3064. | |
Varki, A. 1993. Biological roles of oligosaccharides—all of the theories are correct. Glycobiology 3:97‐130. | |
Wall, D.A., Wilson, G., and Hubbard, A.L. 1980. The galactose‐specific recognition system of mammalian liver ‐ the route of ligand internalization in rat hepatocytes. Cell 21:79‐93. | |
Zhang, J., Pourceau, G., Meyer, A., Vidal, S., Praly, J.P., Souteyrand, E., Vasseur, J.J., Morvan, F., and Chevolot, Y. 2009. DNA‐directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on‐chip IC50 measurement assay. Biosens. Bioelectron. 24:2515‐2521. |