丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Oxidative Stress Indices in Parkinson Disease: Biochemical Determination

互联网

315
Parkinson’s disease (PD) is associated with progressive degeneration of melanin-containing dopamine neuron cell bodies arising in the substantia nigra pars compacta (SNpc) and projecting terminals to the striatum. The disease is best characterized biochemically as a deficiency of striatal dopamine. The mechanism of neurodegeneration remains an enigma despite a large body of investigation and several hypotheses (1 5 ). In the past decade much has been learned about the chemical pathology of the disease. This progress has been helped by elucidation of the mechanism of the neurotoxic actions of 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which are used to induce animal models of this disease. Thus, the most valid current hypothesis concerning the pathogenesis of idiopathic PD is progressive oxidative stress (OS), which can generate excessive reactive oxygen species (ROS) selectively in the SNpc (1 9 ), and subsequent biochemical abnormalities (Table 1 ). In addition, the ROS scavenging system may also diminish, which would exaggerate the condition leading to accumulation of ROS. In PD, it is thought that both these events occur; Table 1 gives a summary of the biochemical changes identified to date in the SNpc of PD patients. Iron, monoamine oxidase B (MAO-B), copper/zinc superoxide dismutase (Cu/Zn-SOD), and heme oxygenase (radical producing) are increased; reduced glutathione (GSH) and vitamin C (radical scavenging) are decreased. Whether OS is a primary or secondary event in PD has not been established, but when it does occur, OS can lead to a cascade of events resulting in the demise of the nigrostriatal dopaminergic neurons. One approach toward protection of such neurons is the use of radical scavengers or iron chelators as neuroprotective drugs (10 ).
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序