Characterization of Calcium Channel Binding
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
Voltage?dependent calcium channels are expressed in a variety of tissues including heart, muscles and brain. Saturation binding of a radioligand to the calcium channel is commonly used to characterize the expression level of the channel protein. Compound competition binding assay is a conventional screening method to determine the affinity of unlabeled compounds for the channel protein. This unit provides detailed experimental methods for two types of radioligand binding assays using [3 H]PN200?100 and [125 I](conotoxin MVIIA. Voltage?dependent calcium channels are expressed in a variety of tissues including heart, muscles and brain
Table of Contents
- Basic Protocol 1: Measurement of [3H]PN200‐100 Saturation Binding to L‐type Calcium Channels in Cardiac Membranes
- Basic Protocol 2: Measurement of [3H]PN200‐100 Displacement Binding to L‐type Calcium Channels in Cardiac Membranes
- Basic Protocol 3: Measurement of [125I]ω‐Conotoxin‐MVIIA Saturation Binding to N‐type Calcium Channels in Rat Brain Membranes
- Basic Protocol 4: Measurement of Compound and [125I]ω‐Conotoxin MVIIA Competition Binding to N‐type Calcium Channels in Rat Brain Membranes
- Commentary
- Literature Cited
- Figures
- Tables
Materials
Basic Protocol 1: Measurement of [3H]PN200‐100 Saturation Binding to L‐type Calcium Channels in Cardiac Membranes
Materials
Basic Protocol 2: Measurement of [3H]PN200‐100 Displacement Binding to L‐type Calcium Channels in Cardiac Membranes
Materials
|
Figures
-
Figure 1.25.1 (A ) Saturation binding of [3 H]PN200‐100 to L‐type calcium channels in mouse heart membrane preparation ( n = 2). (B ) Scatchard analysis of the specific binding data: K d = 54.9 pM and B max = 116.4 fmol/mg protein. View Image -
Figure 1.25.2 Inhibition of [3 H]PN200‐100 binding in mouse heart membrane preparation by nitrendipine and nifedipine ( n = 2). The IC50 values are 408 and 728 pM for nitrendipine and nifedipine, respectively ( K i(nitrendipine) = 206 pM and K i(nifedipine) = 367 pM). View Image -
Figure 1.25.3 (A ) Saturation binding of [125 I] ω‐conotoxin MVIIA to N‐type calcium channels in rat brain membrane preparation ( n = 2). (B ) Scatchard analysis of the specific binding data: K d = 17.9 pM and B max = 1503 fmol/mg protein. View Image -
Figure 1.25.4 Inhibition of [125 I] ω‐conotoxin MVIIA binding to rat brain membrane preparation by ω‐conotoxin MVIIA ( n = 2). The IC50 value is 41.2 pM ( K i = 18.9 pM). View Image
Videos
Literature Cited
Literature Cited | |
Alexander, S.P.H. and Peters, J.A. eds. 2000. Receptor and ion channel nomenclature. Trends Phys. Sci. 11:S98‐S100. | |
Bech‐Hansen, N.T., Naylor, M.J., Maybaum, T.A., Pearce, W.G., Koop, B., Fishman, G.A., Mets, M., Musarella, M.A., and Boycott, K.M. 1998. Loss‐of‐function mutations in a calcium‐channel alpha1‐subunit gene in Xp11.23 cause incomplete X‐linked congenital stationary night blindness. Nat. Genet 19:264‐267. | |
Cheng, Y.C. and Prusoff, W.H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition of an enzyme reaction. Biochem.Pharmacol 23:3099‐3108. | |
Cribbs, L.L., Lee, J.‐H., Yang, J., Satin, J., Zhang, Y., Daud, A., Barclay, J., Williamson, M.P., Fox, M., Rees, M. and Perez‐Reyes, E. 1998. Cloning and characterization of alpha1H from human heart, a member of the T‐type Ca2+ channel gene family. Circ. Res. 83:103‐109. | |
Delean, A., Munson, P.J., and Rodbard, D. 1978. Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose‐response curve. Am. J. Physiol. 235:E97‐E102. | |
Dubel, S.J., Starr, T.V.B., Hell, J., Ahlijanian, M.K., Enyeart, J.J., Catterall, W.A., and Snutch, T.P. 1992. Molecular cloning of the α1 subunit of an ω‐conotoxin‐sensitive calcium channel. Proc. Natl. Acad. Sci. U.S.A. 89:5058‐5062. | |
Ertel, E.A., Campbell, K.P., Harpold, M.M., Hofmann, F., Mori, Y., Perez‐Reyes, E., Schwartz, A., Snutch, T.P., Tanabe, T., Birnbaumer, L., Tsien, R.W., and Catterall, W.A. 2000. Nomenclature of voltage‐gated calcium channels. Neuron 25:533‐535. | |
Lee, J.H., Daud, A.N. Cribbs, L.L., Lacerda, A.E., Pereverzev, A., Klockner, U., Schneider, T., and Perez‐Reyes, E. 1999. Cloning and expression of a novel member of the low voltage‐activated T‐type calcium channel family. J. Neurosci. 19:1912‐21 | |
Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridine‐sensitive calcium channel. Nature 340:230‐233. | |
Mori, Y., Friedrich, T., Kim, M.‐H., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuichi., T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. 1991. Primary structure and functional expression from complementary DNA of a calcium channel. Nature 350:398‐402. | |
Munson, P.J. and Rodbard, D. 1980. A versatile computerized approach for characterization of ligand binding system. Anal. Biochem. 107:220‐239. | |
Perez‐Reyes, E., Cribbs, L.L., Daud, A., Lacerda, A.E., Barclay, J., Williamson, M.P., Fox, M., Rees, M., and Lee, J.H. 1998. Molecular characterization of a neuronal low‐voltage‐activated T‐type calcium channel. Nature 391:896‐900 | |
Snutch, T.P., Tomlinson, W.J., Leonard, J.P., and Gilbert, M.M. 1991. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 7:45‐57. | |
Stoehr, S.J. and Dooley, D.J. 1993. Characteristics of [125I]omega‐conotoxin MVIIA binding to rat neocortical membranes. Neurosci Lett. 161:113‐116 | |
Strom, T.M., Nyakatura, G., Apfelstedt, S‐E., Hellebrand, H., Lorenz, B., Weber, B.H., Wutz, K., Gutwillinger, N., Ruther, K., Drescher, B., Sauer, C., Zrenner, E., Meitinger, T., Rosenthal, A., and Meindl, A. 1998. An L‐type calcium‐channel gene mutated in incomplete X‐linked congenital stationary night blindness. Nat. Genet. 19:260‐263. | |
Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313‐318. | |
Wagner, J.A., Snowman, A.M., Biswas, A., Olivera, B.M., and Snyder, S.H. 1988. ω‐Conotoxin GVIA binding to a high affinity receptor in brain: characterization, calcium sensitivity, and solubilization. J. Neurosci. 8:3354‐3359. | |
Williams, M.E., Brust, P.F., Feldman, D.H., Patthi, S., Simerson, S., Maroufi, A., McCue, A.F., Velicelebi, G., Ellis, S.B., and Harpold, M.M. 1992. Structure and functional expression of an ω–conotoxin‐sensitive human N‐type calcium channel. Science 257:389‐395. | |
Williams, M.E., Feldman, D.H., McCue, A.F., Brenner, R., Velicelebi, G., Ellis, S.B., and Harpold, M.M. 1992. Structure and functional expression of α1, α2, and β subunits of a novel human calcium channel subtype. Science 257:389‐395. | |
Zheng, W., Hawthorn, M., and Triggle, D.J. 1991. Thermodynamic and kinetic aspects of agonist and antagonist binding to 1,4‐dihydropyridine receptor. Eur. J. Pharmacol. 208:137‐147. |