丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Design and Generation of Gene‐Targeting Vectors

互联网

1670
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

This unit provides an overview of the major types of mutant alleles that can be generated by gene targeting in ES cells. It presents the growing public resources of premade gene targeting vectors, modified ES cells, and mutant mice. General guidelines for the design of targeting vectors are followed by protocols for the construction of vectors to generate knockout (KO), conditional KO, and subtle mutant alleles. Curr. Protoc. Mouse Biol. 1:199?211. © 2011 by John Wiley & Sons, Inc.

Keywords: gene targeting; conditional KO mice; targeting vector design; knockout mice; EUCOMM/KOMP

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Protocols for the Construction of Gene Targeting Vectors
  • Concluding Remarks
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 1. Mutant alleles generated by gene targeting and gene trapping. To generate a germline KO allele a neomycin‐cassette is inserted into the critical exon 2 of the target gene. This leads to the disruption of the gene's translational reading frame and the premature termination occurs at the neo ‐polyA site (A ). In a gene trap allele, a βgeo‐cassette, harboring a splice acceptor (SA), the β‐galactosidase/neo coding region and a polyA sequence, is inserted, resulting in the truncation of the wild‐type transcript (B ). Using gene targeting, a subtle mutation can be inserted into an exon of the target gene (C ). In a conditional knockout allele (D ), the critical exon 2 is flanked by two Cre recombinase recognition sites ( lox P sites). Upon Cre expression, the critical exon is excised, leading to a reading frame shift upon splicing to the downstream exon 3. The “knockout first, conditional‐ready” allele (E ), which is used by the EUCOMM/KOMP consortia, allows classical and conditional gene targeting (see Fig. 2). Exons of the target gene are shown as numbered rectangles.
    View Image
  •   Figure 2. Gene targeting using “knockout first, conditional‐ready” alleles. The “knockout first, conditional‐ready” allele (Tm1a, A ) consists of a β‐galactosidase reporter cassette (“ lacZ ‐pA”) and a neomycin expression cassette (“act‐ neo ‐pA”) flanked by two FRT sites. The critical exon 2 is flanked by two lox P sites; a third loxP site is located between the lacZ and neo genes. Upon Cre recombination of the Tm1a allele, exon 2, and the neomycin cassette are excised, leading to the lacZ ‐tagged knockout allele (Tm1b, B ). If the knockout first allele is initially recombined using FLP recombinase, the β‐galactosidase cassette is deleted, creating a conditional knockout allele (Tm1c, C ). Subsequent recombination with Cre recombinase in specific cell types leads to the conditional inactivated allele (Tm1d, D ). Exons of the target gene are shown as numbered rectangles.
    View Image
  •   Figure 3. Targeting vectors for germline knockout alleles. Genomic DNA or a BAC clone (A ) is used for the PCR amplification of homology arms, which are then cloned into the plasmid backbone (B ). The resulting targeting vector (C ) is integrated into the target gene locus by homologous recombination, leading to a neomycin‐positive knockout allele (D ). Exons of the target gene are shown as numbered rectangles.
    View Image
  •   Figure 4. Targeting vectors for conditional knockout alleles. Genomic DNA or a BAC clone (A ) is used for the PCR amplification of homology arms, which are then cloned into the pEasyFlox‐II‐DTA plasmid backbone (B ). The resulting targeting vector (C ) is used for the mutagenesis of the target gene by homologous recombination, leading to a neomycin‐positive mutant allele (D ). Finally, the neomycin cassette is excised using FLP recombinase to obtain the conditional allele (E ). Exons of the target gene are shown as numbered rectangles.
    View Image
  •   Figure 5. Targeting vectors for insertion of subtle mutations. Genomic DNA or a BAC clone (A ) is used for the PCR amplification of homology arms. A subtle mutation and a silent mutation creating the restriction site Re2 are introduced by the use of a PCR approach for site‐directed mutagenesis. The homology arms are then cloned into the plasmid backbone (B ). The resulting targeting vector (C ) is integrated into the target gene locus by homologous recombination, leading to a neomycin‐positive mutant allele (D ). Finally, the neomycin cassette is excised using FLP recombinase to obtain the mutant allele harboring the subtle mutation (E ). Exons of the target gene are shown as numbered rectangles.
    View Image

Videos

Literature Cited

Literature Cited
   Branda, C.S. and Dymecki, S.M. 2004. Talking about a revolution: The impact of site‐specific recombinases on genetic analyses in mice. Dev. Cell 6:7‐28.
   Capecchi, M.R. 1989. The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 5:70‐76.
   Capecchi, M.R. 2005. Gene targeting in mice: Functional analysis of the mammalian genome for the twenty‐first century. Nat. Rev. Genet. 6:507‐512.
   Chan, W., Costantino, N., Li, R., Lee, S.C., Su, Q., Melvin, D., Court, D.L., and Liu, P. 2007. A recombineering based approach for high‐throughput conditional knockout targeting vector construction. Nucleic Acids Res. 35:e64.
   Cormack, B. 2001. Directed mutagenesis using the polymerase chain reaction.Curr. Protoc. Mol. Biol. 37:8.5.1‐8.5.10.
   Eggan, K., Akutsu, H., Loring, J., Jackson‐Grusby, L., Klemm, M., Rideout, W.M. 3rd, Yanagimachi, R., and Jaenisch, R. 2001. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. U.S.A. 98:6209‐6214.
   Elion, E.A., Marina, P., and Yu, L. 2007. Constructing recombinant DNA molecules by PCR. Curr. Protoc. Mol. Biol. 78:3.17.1‐3.17.12.
   Evans, M.J., Carlton, M.B., and Russ, A.P. 1997. Gene trapping and functional genomics. Trends Genet. 13:370‐374.
   Friedel, R.H., Seisenberger, C., Kaloff, C., and Wurst, W. 2007. EUCOMM–the European conditional mouse mutagenesis program. Brief. Funct. Genomic Proteomic 6:180‐185.
   Fu, J., Teucher, M., Anastassiadis, K., Skarnes, W., and Stewart, A.F. 2010. A recombineering pipeline to make conditional targeting constructs. Methods Enzymol. 477:125‐144.
   Gomez‐Rodriguez, J., Washington, V., Cheng, J., Dutra, A., Pak, E., Liu, P., McVicar, D.W., and Schwartzberg, P.L. 2008. Advantages of q‐PCR as a method of screening for gene targeting in mammalian cells using conventional and whole BAC‐based constructs. Nucleic Acids Res. 36:e117.
   Hansen, J., Floss, T., Van Sloun, P., Fuchtbauer, E.M., Vauti, F., Arnold, H.H., Schnutgen, F., Wurst, W., von Melchner, H., and Ruiz, P. 2003. A large‐scale, gene‐driven mutagenesis approach for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. U.S.A. 100:9918‐9922.
   Hasty, P., Abuin, A., and Bradley, A. 2000. Gene targeting, principles, and practice in mammalian cells. In Gene Targeting: A Practical Approach, 2nd ed. (A.L. Joyner, ed.) pp. 1‐35. Oxford University Press, Oxford.
   Hitz, C., Steuber‐Buchberger, P., Delic, S., Wurst, W., and Kuhn, R. 2009. Generation of shRNA transgenic mice. Methods Mol. Biol. 530:101‐129.
   Kranz, A., Fu, J., Duerschke, K., Weidlich, S., Naumann, R., Stewart, A.F., and Anastassiadis, K. 2010. An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis 48:512‐520.
   Kühn, R. and Wurst, W. 2005. Mouse mutagenesis and gene function. In Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, p. 18. John Wiley & Sons, Hoboken, N.J.
   Kwan, K.M. 2002. Conditional alleles in mice: Practical considerations for tissue‐specific knockouts. Genesis 32:49‐62.
   Lee, S.C., Wang, W., and Liu, P. 2009. Construction of gene‐targeting vectors by recombineering. Methods Mol. Biol. 530:15‐27.
   Mansour, S.L., Thomas, K.R., Deng, C.X., and Capecchi, M.R. 1990. Introduction of a lacZ reporter gene into the mouse int‐2 locus by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 87:7688‐7692.
   Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. 2003. Manipulating the Mouse Embryo, third edition ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
   Pettitt, S.J., Liang, Q., Rairdan, X.Y., Moran, J.L., Prosser, H.M., Beier, D.R., Lloyd, K.C., Bradley, A., and Skarnes, W.C. 2009. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 6:493‐495.
   Rajewsky, K., Gu, H., Kuhn, R., Betz, U.A., Muller, W., Roes, J., and Schwenk, F. 1996. Conditional gene targeting. J. Clin. Invest. 98:600‐603.
   Schnutgen, F., Doerflinger, N., Calleja, C., Wendling, O., Chambon, P., and Ghyselinck, N.B. 2003. A directional strategy for monitoring Cre‐mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21:562‐565.
   Schnutgen, F., De‐Zolt, S., Van Sloun, P., Hollatz, M., Floss, T., Hansen, J., Altschmied, J., Seisenberger, C., Ghyselinck, N.B., Ruiz, P., Chambon, P., Wurst, W., and von Melchner, H. 2005. Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. U.S.A. 102:7221‐7226.
   Southern, E. 2006. Southern blotting. Nat. Protoc. 1:518‐525.
   te Riele, H., Maandag, E.R., and Berns, A. 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. U.S.A. 89:5128‐5132.
   Testa, G., Zhang, Y., Vintersten, K., Benes, V., Pijnappel, W.W., Chambers, I., Smith, A.J., Smith, A.G., and Stewart, A.F. 2003. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat. Biotechnol. 21:443‐447.
   Testa, G., Vintersten, K., Zhang, Y., Benes, V., Muyrers, J.P., and Stewart, A.F. 2004. BAC engineering for the generation of ES cell‐targeting constructs and mouse transgenes. Methods Mol. Biol. 256:123‐139.
   Thomas, K.R. and Capecchi, M.R. 1987. Site‐directed mutagenesis by gene targeting in mouse embryo‐derived stem cells. Cell 51:503‐512.
   Torres, R.M. and Kühn, R. 1997. Laboratory Protocols for Conditional Gene Targeting. Oxford University Press, Oxford.
   Valenzuela, D.M., Murphy, A.J., Frendewey, D., Gale, N.W., Economides, A.N., Auerbach, W., Poueymirou, W.T., Adams, N.C., Rojas, J., Yasenchak, J., Chernomorsky, R., Boucher, M., Elsasser, A.L., Esau, L., Zheng, J., Griffiths, J.A., Wang, X., Su, H., Xue, Y., Dominguez, M.G., Noguera, I., Torres, R., Macdonald, L.E., Stewart, A.F., DeChiara, T.M., and Yancopoulos, G.D. 2003. High‐throughput engineering of the mouse genome coupled with high‐resolution expression analysis. Nat. Biotechnol. 21:652‐659.
   Wu, S., Ying, G., Wu, Q., and Capecchi, M.R. 2008. A protocol for constructing gene targeting vectors: Generating knockout mice for the cadherin family and beyond. Nat. Protoc. 3:1056‐1076.
   Yagi, T., Ikawa, Y., Yoshida, K., Shigetani, Y., Takeda, N., Mabuchi, I., Yamamoto, T., and Aizawa, S. 1990. Homologous recombination at c‐fyn locus of mouse embryonic stem cells with use of diphtheria toxin A‐fragment gene in negative selection. Proc. Natl. Acad. Sci. U.S.A. 87:9918‐9922.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序