丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

假设检验

互联网

779
佚名
 

 

亦称显著性检验,其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。

  进行假设检验时,要先建立检验假设(即上述第一种可能,符号是H 0 )与备择假设(即上述第二种可能,符号是H 1 ),确立检验水准(当检验假设为真,但被错误地拒绝的概率,记作α),通常取α=0.05或α=0.01;然后由样本观察值按相应的公式计算统计量,如X 2 值、t值等;最后查有关的统计用表确定P值范围(有时也可直接计算P值)作出结论。若P>α,结论为按α所取水准不显著,不拒绝H 0 ,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H 0 ,接受H 1 ,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。

 

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序