丁香实验_LOGO
登录
提问
提问
我要登录
|免费注册
丁香通
点赞
收藏
wx-share
分享

模式生物与发育生物学——童话般的科学故事

互联网

1081

螟蛉有子,蜾蠃负之——《诗经·小雅·小宛》 
七月在野,八月在户,九月在宇,十月蟋蟀,入我床下——《诗经·豳风·七月》 
今夜偏知春气暖,虫声新透绿窗纱——刘方平(唐)《春夜》  

  有这样一些生命,亿万年来,它们或栖身于朽木败叶之下,或飞舞于山花野果丛中,或在山溪浅水中徜徉,或在大海惊涛下蜷缩,或在荒野上荣枯,或在污秽中滋生。它们的家族,从未在生命进化激流中独领风骚,而是随着进化车轮的远去,在草际林边复归于沉寂。然而这些柔弱的生命竟能生生不息,直等到不可思议的基因塑造出这样一种生命,他们凝视自身和他者,如同漫漫长夜中的孤独灯火,追寻着生命的意义。最令人惊奇的是,他们竟能在物种变迁之余肇始文化的源泉,开创艺术与科学。人类百余年的现代科学史,在漫漫时间的序列中只是轻忽的一瞬,即使对我们将要谈及的几种小生命,这样的一些时间也不过是恒常岁月中千百代繁衍生息之余的惊鸿一瞥。然而,正是在这激情洋溢的百余年间,人类对生命世界的认识,由混沌逐渐清晰,由清晰产生敬畏,在敬畏之余复归于理性。不止一位科学巨匠望洋兴叹:二十世纪前半页生命科学的最大成就,乃是认识到人类对生命的本质竟是如此的无知。路漫漫其修远,吾将从何处上下而求索?直到看似寻常的某一天,有几位思考者,在海滨漫步时拣几枚海胆,在花园里捕几只果蝇,在玻璃缸里养了群彩色缤纷的斑马鱼,或是在显微镜下找到些线虫,在非洲考察时带回种蟾蜍,从此,百年困惑,逐渐开朗。

  一直到不久以前,多细胞 生物 在胚胎期复杂的发育变化和调控一直是困扰生命科学的未解之迷。个体生命诞生自精卵结合形成合子,经过细胞的不断分裂、迁移、分化并发生巨大形态变化,构建出未来身体的雏形。越是出生后形态复杂的 生物 ,其发育中细胞间关系的变化也就越剧烈。此外,虽然所有细胞都来自于同一个受精卵,但从发育早期开始,它们就走上了不同的分化道路,越到后期,要精确的说出每个特定位置上细胞的来历就越困难。发育过程从本质上讲是一部生命发展的细胞历史。成体中每个细胞都有一段自己独特的历史,总括起来就构成了个体生命。对复杂生物发育的解读类似于对有悠久历史的古文明所进行的研究,史料千头万绪,细节纷繁,难以把握,有时甚至无从下手。显然,如何选取恰当的切入点,找出诸种复杂现象背后潜藏的共同规律就成为洞悉这部生命史的关键。 

  早在一百多年前人们就发现,如果把关注的焦点集中在相对简单的生物上则发育的难题可以得到部分解答。因为这些生物的细胞数量和种类更少,胚胎在体外发育,变化也较容易观察。由于进化的原因,细胞生命在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育共同规律是可能的。尤其是当在有不同发育特点的生物中发现共同形态发生和变化特征时,发育的普遍原理也就得以建立 。因为对这些生物的研究具有帮助我们理解生命世界一般规律的意义,所以它们被称为“模式生物”。一种模式生物应具备以下特点:
1)其生理特征能够代表生物界的某一大类群;
2)容易获得并易于在实验室内饲养、繁殖;
3)容易进行实验操作,特别是遗传学分析。
于是,长久以来在进化支流的港湾中休憩的小生命——酵母、线虫、果蝇、海胆、斑马鱼、非洲爪蟾、小鼠、拟南芥,获得了前所未有的青睐。 

   海胆 (sea urchin)是生物科学史上最早被使用的模式生物,它的卵子和胚胎对早期发育生物学的发展有举足轻重的作用。早在1875年, Oscer Hertiwig(1849-1922)就开始以海胆为材料研究受精过程中细胞核的作用。1891年,Hans Driesh(1876-1941)在显微镜下把刚刚完成第一次卵裂的海胆胚胎一分为二,结果发现,分开后的两个细胞各自形成了一个完整幼虫。这一实验的意义在于证明胚胎具有调整发育的能力,为现代发育生物学奠定了第一块观念里程碑。1890年后,海胆更在受精和早期胚胎发育的研究中起了重要作用。同种海胆精卵表面分子的特异性识别、精子顶体反应、卵皮质反应等现象的发现,为受精生物学奠定了最初的基础。

  稍后于海胆获得生物学家青睐的模式生物是苍蝇的亲戚——学名唤作 黑腹果蝇 (fruit fly, Drosophila melanogaster)。它在近代生物学史上的地位显赫,这红眼睛黑肚皮的小东西曾经三度飞进卡罗林斯卡医学院的颁奖大厅,为主人取回诺贝尔生物医学奖桂冠(1933年摩尔根,1946年缪勒,1995年刘易斯、尼尔森-沃哈德和维斯郝斯)。由于它们繁殖迅速、染色体巨大且易于进行基因定位,因此自1909年摩尔根(Thomas Hunt Morgan,1866-1945)将之用作研究遗传变异和染色体关系的材料之后,果蝇就成为经典遗传学家揭示遗传规律的一张王牌。虽然1940年代后的30年中,更易进行分子生物学操作的大肠杆菌、酵母菌和噬菌体等微生物一度取代了它的辉煌地位,但1970年开始人们发现果蝇在胚胎发育图式的构建中具有特殊优点:它由14个体节构成的躯干完全对称,一套基因控制了这些体节从上到下的发生过程,后来的研究证明,这套基因普遍存在于从昆虫到人的基因组中,是决定机体左右对称布局形成的最基本因素。由此,果蝇再次引起人们的高度兴趣,其在遗传和发育研究中的地位又变得举足轻重起来。  USeXBi2IGV
  从任何意义上, 秀丽隐杆线虫 (nematode, Caenorhabditis elegans)都是一种名副其实的美丽生物。显微镜下,它通身透明,纤细的身躯优雅的摆动,每一块肌肉的收缩与松弛的一览无余。这种长不过1毫米的小生物有几个和人类关系密切的亲戚:蛔虫和蛲虫就是其中最大名鼎鼎的两个。不过,秀丽线虫本身和自然状态的人关系不大,它生活在土壤中,以细菌为食,被称为“自由线虫”。在有着多达2000万同宗兄弟的线虫家族中,它们一直默默无闻的过着无人打扰的幸福生活,千百万年来,除了少数线虫分类学家,我们对它们也不闻不问。然而,当进入20世纪70年代时,秀丽线虫的平静生活被一群发育生物学家打破。线虫之所以能在经典模式生物的名单中占有一个重要位置和它的形态特点有密切关系,它是唯一一个身体中的所有细胞能被逐个盘点并各归其类的生物。它的幼虫含有556个体细胞和2个原始生殖细胞,成虫则根据性别不同具有不同的细胞数。最常见的雌雄同体成虫成熟后含有959个体细胞和2000个生殖细胞,而较少见的雄性成虫则只有1031个体细胞和1000个生殖细胞。此外,线虫的生命周期很短,它从生到死的全过程只有3天半,这就使得不间断的观察并追踪每个细胞的演变成为可能。只要把线虫浸泡到含有核酸的溶液中,就可以用这种最简单的方式实现基因导入。线虫还可以被冻在冰箱里储存,复苏之后继续研究。通过20年的努力,到90年代中期,人们已经建立了完整的线虫从受精卵到所有成体细胞的谱系图。这意味着,它机体里每一个细胞的来龙去脉都处于我们的视野中,清晰并且无所遗漏。 

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序