丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

色谱技术简介(一)

互联网

1616

引 言
  色谱法是1906年俄国植物学家Michael Tswett将含有有色的植物叶子色素和溶液通过装填有白垩粒子吸附剂的柱子,企图分离它们时而发现并命名的。各种色素以不同的速率通过柱子,从而彼此分开。分离开的色素形成不同的色带而易于区分,由此得名为色谱法(Chromatography),又称层析法。其后的一个重大进展是1941年Martin和Synge 发现了液-液(分配)色谱法[Liquid-Lipuid(partition)Chromatography,简称LIC]。 他们用覆盖于吸附剂表面的并与流动相不混溶的固定液来代替以前仅有的固体吸附剂。试样组分按照其溶解在两相之间分配。Martin和Synge因为这一工作而荣获1952 年诺贝尔化学奖。在使用柱色谱的早期年代,可靠地鉴定小量的被分离物质是困难的,所以研究发展了纸色谱法(Paper Chromatography,简称PC)。在这种“平面的”技术中,分离主要是通过滤纸上的分配来实现的。然后由于充分考虑了平面色谱法的优点而发展了薄层色谱法(Thin-Layer Chromatography,简称TLC),在这种方法中,分离系在涂布于玻璃板或某些坚硬材料上的薄层吸附剂上进行。
  在Stah-l于1958年进行了经典性的工作将技术和所用材料加以标准化之后,
  薄层色谱法方赢得了声誉。为了帮助提高纸色谱法或薄层色谱法对离子化合物的分离效率,可以向纸或板施加电场。这种改进了方法分别称作纸上电泳或薄层电泳。

新近发展起来的色谱法
    气相色谱法是Martin和James于1952 年首先描述的,现已成为所有色谱法中最高级和最广泛使用的一种方法,它特别适用于气体混合物或挥发性液体和固体,即便对于很复杂的混合物,其分离时间也仅为几分钟左右,这已属司空见惯。高分辩率、分析迅速和检测灵敏等几种优点之综合使气相色谱法成了几乎每个化学实验室要采用的一种常规方法。近年来,因为新型液相色谱仪和新型柱填料的发展以及对色谱理论的更深入了解,又重新引起对密闭柱液相色谱法的兴趣。高效液相色谱法(High-Performance Liquid Chromatography,简称HPLC)迅速成为与气相色谱法一样广泛使用的方法,对于迅速分离非挥发性的或热不稳定的试样来说,高效液相色谱法常常是更可取的。
  色谱法分类
  色谱法有多种类型,也有多种分类方法。
  (一)按两相所处的状态分类
  液体作为流动相,称为“液相色谱”(liquid chromatograp-hy);用气体作为流动相,称为“气相色谱”(gas
  chromatogr-aphy)。固定相也有两种状态,以固体吸附剂作为固定相和以附载在固体上的液体作为固定相,所以层析法按两相所处的状态可以分为: 
     液-固色谱(liquid-solid chromatography)
     液-液色谱(liquid-liquid chromatography)
     气-固色谱(gas-solid chromatography)
     气-液色谱(gas-liquid chromatography)
     (二)按层析过程的机理分类
  吸附层析(adsorption chromatography )利用吸附剂表面对不同组分吸附性能的差异,达到分离鉴定的目的。
  分配层析(partition chromatography)利用不同组分在流动相和固定相之间的分配系数(或溶解度)不同,而使之分离的方法。
  离子交换层析(ion-exchange chromatography )利用不同组分对离子交换剂亲和力的不同,而进行分离的方法。凝胶层析(gelchromatography)利用某些凝胶对于不同组分因分子大小不同而阻滞作用不同的差异,进行分离的技术。

[$page$]
     (三)按操作形式不同分类
  柱层析(colum chromatography)将固定相装于柱内,使样品沿一个方向移动而达到分离。纸层析(paper chrmatography)用滤纸作液体的载体(担体support),点样后,用流动相展开,以达到分离鉴定的目的。薄层层析(thin layper chromatography)将适当粒度的吸附剂铺成薄层,以纸层析类似的方法进行物质的分离和鉴定。
  吸附色谱法
  吸附色谱法常叫做液-固色谱法(Liquid-Solid
  Chromatography,简称LSC),它是基于在溶质和用作固定固体吸附剂上的固定活性位点之间的相互作用。可以将吸附剂装填于柱中、覆盖于板上、或浸渍于多孔滤纸中。吸附剂是具有大表面积的活性多孔固体,例如硅胶、氧化铝和活性炭等。活性点位例如硅胶的表面硅烷醇,一般与待分离化合物的极性官能团相互作用。分子的非极性部分(例如烃)对分离只有较小影响,所以液-固色谱法十分适于分离不同种类的化合物(例如,分离醇类与芳香烃)。
  分配色谱法
  在分配色谱法(也称体液-液色谱法)中,溶质分子在两种不相混溶的液相即固定相和流动相之间按照它们的相对溶解度进行分配。固定相均匀地覆盖于惰性载体─多孔的或非多孔的固体细粒或多孔纸上(纸上谱)。为避免两相的混合,两种分配液体在极性上必须显著不同。若固定液是极性的(例如乙二醇),流动相是非极性的(例如乙烷),那么极性组分将较强烈的被保留。这是通常的操作方式。另一方面,若固定相是非极性的(例如癸烷),流动相是极性的(例如水),则极性组分易分配于流动相,从而洗脱得较快。后一种方法(它有相反的极性)称作为反相液─液色谱法。由于溶解度差别的细微效应,所以液─液色谱法很适于分离同系物的同分异构体。在液─液色谱法中,固定相几乎都被化学键合在载体物质上,而不是机械覆盖在它的表面。这种色谱法称作键合相色谱法(Bonded-Phase Chromatography,简称 BPC)。这种方法的机理尚不清楚,可能是分配机理,也可能是吸附机理, 视实验条件而定。高效液相色谱法中,键合相色谱法的应用远远超过所有其他模式。
  离子交换色谱法
  Sober 和 Peterson于1956年首次将离子交换基团结合到纤维素上,制成了离子交换纤维素,成功地应用于蛋白质的分离。从此使生物大分子的分级分离方法取得了迅速的发展。离子交换基团不但可结合到纤维上, 还可结合到交联葡聚糖(S-ephadex)和琼脂糖凝胶(Sepharose)上。
  近年来离子交换色谱技术已经广泛应用于蛋白质、酶、核酸、肽、寡核苷酸、病毒、噬菌体和多糖的分离和纯化。它们的优点是:⑴具有开放性支持骨架,大分子可以自由进入和迅速扩散,故吸附容量大。⑵具有亲水性,对大分子的吸附不大牢固,用温和条件使可以洗脱,不致引起蛋白质变性或酶的失活。⑶多孔性,表面积大、交换容量大,回收率高,可用于分离和制备。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序