丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

膜片钳操作实验

相关实验:膜片钳操作实验

最新修订时间:

原理

膜片钳技术是用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆以上的阻抗使之封接,使与电极尖开口处相接的细胞膜的小区域(膜片)与其周围在电学上分隔,在此基础上固定点位,对此膜片上的离子通道的离子电流(pA级)进行监测记录的方法。用场效应管运算放大器构成的I-V转换器是测量回路的核心部分。在场效应管运算放大器的正负输入端子为等电位,向正输入端子施加指令电位时,由于短路负端子以及膜片都可等电位地达到钳制的目的,当膜片微电极尖端与默片之间形成10GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流可100%作为来自膜片电极的记录电流(lp)而被测量出来。

材料与仪器

膜片钳

步骤

运用膜片钳进行膜离子通道特性的研究,是一项艰辛、细致、繁杂的工作,要求较高的技术水平和实验条件作保证,现在大致介绍一下膜片钳实验的过程,粗略地包括以下几个方面。
 
1. 标本制备 根据研究目的的不同,可采用不同的细胞组织,如心肌细胞、平滑肌细胞、肿瘤细胞等,现在几乎可对各种细胞进行膜片钳的研究。对所采用的细胞,必须满足实验要求,一般多采用酶解分离法,也可采用细胞培养法;另外,由于与分子生物学技术的结合,现在也运用分子克隆技术表达不同的离子通道,如利用非洲爪蟾卵母细胞表达外源性基因等。
 
2. 电极制备 合格的膜片微电极是成功封接细胞膜的基本条件。要成功的封接细胞膜需要两方面的因素保证,一是设法造成干净的细胞膜表面,二是制成合格的电极。首先要选择适当的玻璃毛细管,其材料可使用软质玻璃(苏打玻璃、电石玻璃)或硬质玻璃(硼硅玻璃、铝硅玻璃、石英玻璃)。软玻璃电极常用于作全细胞记录,硬质玻璃因导电率低、噪声小而常用于离子单通道记录。膜片微电极是将玻璃毛细管用电极拉制仪拉制而成的,制作分三步进行:
 
第一步是分两次拉制,第一次拉长7~10mm,直径小于200um,在此基础上进行第二次拉制,最终使尖端的直径为1~2um,两步拉制的目的主要是使电极前端的锥度变大,狭窄部长度缩短,因此可降低电极的串联电阻,也可减少全细胞记录时的电极液透析时间。由于膜片微电极最忌沾染灰尘和脏物,更忌触碰尖端附近部位,所以一般要求在使用前制作。
 
第二步是在电极前端涂以硅酮树脂(sylgard),其目的是为了降低电极与灌流液之间的电容,并形成一个亲水界面。经此处理后,上述电容可由6~8pF减少到1pF以下。硅酮树脂对形成Giga的seals无影响,但可减少本底噪音,对单通道记录很重要。在进行全细胞记录时,不用硅酮树脂也可以得到满意的效果,通常微电极在涂抹硅酮树脂后再进行抛光,但最好是在涂抹后一小时内抛光,否则很难改变电极尖端的形状。
 
第三步是抛光,将电极固定于显微镜工作台上,在镜下将尖端靠近加热丝,当通电加热时,可见电极尖端微微回缩,此时电极变得光滑,且尖端的杂质烧去,得到较干净的表面。从而有利于和细胞膜紧密封接,并在封接后更易保持稳定。
 
电极在实验前要灌注电极液,由于电极尖端较细,因此在充灌前,电极内液要用0.2 um的滤膜进行过滤。一般电极充灌可分灌尖(tipfilling)和后充(backfilling)两步。灌尖时将电极尖端浸入内液中5s即可,由于毛细作用溶液会进入电极最尖端处,然后从电极后端用细小的聚丙烯注射管插至尖端附近将溶液充至1/4长度,用手指轻轻弹除尖端残留的气泡即可。灌注后的电极电阻一般为2~5;,而全细胞记录则最好在2~3
 
3. 膜片钳实验系统 根据不同的电生理实验要求,可以组建不同的实验系统,但有若干共同的基本部件,包括机械部分(防震工作台、屏蔽罩、仪器设备架)、光学部分(显微镜、视频监视器、单色光系统)、电子部件(膜片钳放大器、刺激器、数据采集的设备、计算机系统)和微操纵器(图1)。
 


图1
 
在大多数膜片钳实验,要求所有实验仪器及设备均具有良好的机械稳定性,以使微电极与细胞膜之间的相对运动尽可能小。防震工作台放置倒置显微镜和与之固定连接的微操纵器,其他设备置于台外。屏蔽罩由铜丝网制成,接地以防止周围环境的杂散电场对膜片钳放大器的探头电路的干扰。仪器设备架要靠近工作台,便于测量仪器与光学仪器配接。
 
倒置显微镜是膜片钳实验系统的主要光学部件,它不仅具有较好的视觉效果,便于将玻璃电极与细胞的顶部接触,而且是借助移动物镜来实现聚焦,具有较好的机械稳定性。视频监视器主要是用来监视实验过程中的操作,特别是能将封接参数(如封接阻抗)与细胞的形态对应,以实现良好的封接。
 
膜片钳放大器是整个实验系统中的核心,它可用来作单通道或全细胞记录,其工作模式可以是电压钳,也可以是电流钳。从原理来说,膜片钳放大器的探头电路即I-V变换器有两种基本结构形式,即电阻反馈式和电容反馈式,前者是一种典型的结构,后者因用反馈电容取代了反馈电阻,降低了噪声,所以特别适合超低噪声的单通道记录。由于供膜片钳实验的专用计算机硬件及相应的软件程序的相继出现,使得膜片钳实验操作简便、效率提高。如与EPC-9型膜片钳放大器(内含ITC-16数据采集/接口卡)配套使用的软件PULSE/PULSEFIT,它既可产生刺激波形,控制数据采集,又可分析数据,同时具有用于膜电容监测的锁相放大器,多种软件功能集成于一体。
 
4. 进行实验,记录和分析数据 准备工作就绪后即可进行实验操作,数据记录和分析。这里主要介绍高阻封接的形成(图2)。
 
 
对电极持续施加一个1mV、10~50 ms的阶跃脉冲刺激,电极入水后电阻约4~6;,此时在计算机屏幕显示框中可看到测试脉冲产生的电流波形。开始时增益不宜设得太高,一般可在1~5mV/pA,以免放大器饱和。由于细胞外液与电极内液之间离子成分的差异造成了液结电位,故一般电极刚入水时测试波形基线并不在零线上,须首先将保持电压设置为0mV,并调节电极失调控制使电极直流电流接近于零。用微操纵器使电极靠近细胞,当电极尖端与细胞膜接触时封接电阻指示Rm会有所上升,将电极稍向下压,Rm指示会进一步上升。通过细塑料管向电极内稍加负压,细胞膜特性良好时,Rm一般会在1min内快速上升,直至形成GΩ级的高阻抗封接。一般当Rm达到100左右时,电极尖端施加轻微负电压(-30~-10mV)有助于GΩ封接的形成。此时的现象是电流波形再次变得平坦,使电极超极化由-40到-90mV,有助于加速形成封接。为证实GΩ封接的形成,可以增加放大器的增益,从而可以观察到除脉冲电压的首尾两端出现电容性脉冲尖端电流之外,电流波形仍呈平坦状。
 
在形成高阻抗封接后,记录实验结果之前,通常要根据实验的要求进行参数补偿,以期获得符合实际的结果。需要注意的是,应恰当设置放大器的带宽,例如10kHz,这样在电流监测端将观察不到超越此频带以外的无用信息。
 
膜片钳实验难度大、技术要求高,要掌握有关技术和方法虽不是很困难的事,但要从一大批的实验数据中,经过处理和分析,得出有意义、有价值的结果和结论,就显得不那么容易,有许多需要注意和考虑的问题,包括减少噪音,避免电极前端的污染,提高封接成功率,具体实验过程中还需要考虑如何选取记录模式,为记录特定离子电流如何选择电极内、外液,如何选择阻断剂、激动剂,如何进行正确的数据采集等许多更为复杂的问题,还需在科研实践中不断地探索和解决。
     

常见问题

膜片钳实验难度大、技术要求高,要掌握有关技术和方法虽不是很困难的事,但要从一大批的实验数据中,经过处理和分析,得出有意义、有价值的结果和结论,就显得不那么容易,有许多需要注意和考虑的问题,包括减少噪音,避免电极前端的污染,提高封接成功率,具体实验过程中还需要考虑如何选取记录模式,为记录特定离子电流如何选择电极内、外液,如何选择阻断剂、激动剂,如何进行正确的数据采集等许多更为复杂的问题,还需在科研实践中不断地探索和解决。

来源:丁香实验

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序